Some logarithmic function spaces, entropy numbers, applications to spectral theory

Haroske Dorothee

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1998

Abstract

top
AbstractIn [18] and [19] we have studied compact embeddings of weighted function spaces on ℝⁿ, i d : H q s ( w ( x ) , ) L ( ) , s>0, 1 < q ≤ p< ∞, s-n/q+n/p > 0, with, for example, w ( x ) = x α , α > 0, or w ( x ) = l o g β x , β > 0, and x = ( 2 + | x | ² ) 1 / 2 . We have determined the behaviour of their entropy numbers eₖ(id). Now we are interested in the limiting case 1/q = 1/p + s/n. Let w ( x ) = l o g β x , β > 0. Our results in [18] imply that id cannot be compact for any β > 0, but after replacing the target space Lₚ(ℝⁿ) by a “slightly” larger one, L ( l o g L ) - a ( ) , a > 0, the corresponding embedding becomes compact and we can study its entropy numbers. We apply our result to estimate eigenvalues of the compact operator B = b₂ ∘ b(·,D) ∘ b₁ acting in some Lₚ space, where b(·,D) belongs to some Hörmander class Ψ 1 , γ - ϰ , ϰ > 0, 0 ≤ γ < 1, and b₁, b₂ are in (weighted) logarithmic Lebesgue spaces on ℝⁿ. Another application concerns the study of “negative spectra” via the Birman-Schwinger principle. The last part shows possible generalisations of the spaces L ( l o g L ) - a ( ) with ℝⁿ replaced by a space of homogeneous type (X,δ,μ).CONTENTSIntroduction.........................................................................................51. Non-limiting embeddings - a short review........................................82. The spaces Lₚ(log L)ₐ on ℝⁿ.........................................................12  2.1. The spaces Lₚ(log L)ₐ(Ω) and L p , q ( l o g L ) ( Ω ) ................12  2.2. The spaces L ( l o g L ) - a ( ) , a > 0...................................20  2.3. The spaces Lₚ(log L)ₐ(ℝⁿ), a > 0.............................................27  2.4. Hölder inequalities...................................................................32  2.5. Examples.................................................................................353. Entropy numbers, limiting embeddings.........................................374. Applications..................................................................................47  4.1. Eigenvalue distribution............................................................47  4.2. Negative spectrum...................................................................535. Homogeneous spaces..................................................................55References.......................................................................................581991 Mathematics Subject Classification: 46E35, 46E30, 41A46, 35P15, 35P20, 35J70.

How to cite

top

Haroske Dorothee. Some logarithmic function spaces, entropy numbers, applications to spectral theory. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1998. <http://eudml.org/doc/271248>.

@book{HaroskeDorothee1998,
abstract = {AbstractIn [18] and [19] we have studied compact embeddings of weighted function spaces on ℝⁿ, $id: H^s_q(w(x),ℝⁿ) → Lₚ(ℝⁿ)$, s>0, 1 < q ≤ p< ∞, s-n/q+n/p > 0, with, for example, $w(x) = ⟨x⟩^α$, α > 0, or $w(x) = log^β⟨x⟩$, β > 0, and $⟨x⟩ = (2+|x|²)^\{1/2\}$. We have determined the behaviour of their entropy numbers eₖ(id). Now we are interested in the limiting case 1/q = 1/p + s/n. Let $w(x) = log^β⟨x⟩$, β > 0. Our results in [18] imply that id cannot be compact for any β > 0, but after replacing the target space Lₚ(ℝⁿ) by a “slightly” larger one, $Lₚ(log L)_\{-a\}(ℝⁿ)$, a > 0, the corresponding embedding becomes compact and we can study its entropy numbers. We apply our result to estimate eigenvalues of the compact operator B = b₂ ∘ b(·,D) ∘ b₁ acting in some Lₚ space, where b(·,D) belongs to some Hörmander class $Ψ^\{-ϰ\}_\{1,γ\}$, ϰ > 0, 0 ≤ γ < 1, and b₁, b₂ are in (weighted) logarithmic Lebesgue spaces on ℝⁿ. Another application concerns the study of “negative spectra” via the Birman-Schwinger principle. The last part shows possible generalisations of the spaces $Lₚ(log L)_\{-a\}(ℝⁿ)$ with ℝⁿ replaced by a space of homogeneous type (X,δ,μ).CONTENTSIntroduction.........................................................................................51. Non-limiting embeddings - a short review........................................82. The spaces Lₚ(log L)ₐ on ℝⁿ.........................................................12  2.1. The spaces Lₚ(log L)ₐ(Ω) and $L_\{p,q\}(log L)ₐ(Ω)$................12  2.2. The spaces $Lₚ(log L)_\{-a\}(ℝⁿ)$, a > 0...................................20  2.3. The spaces Lₚ(log L)ₐ(ℝⁿ), a > 0.............................................27  2.4. Hölder inequalities...................................................................32  2.5. Examples.................................................................................353. Entropy numbers, limiting embeddings.........................................374. Applications..................................................................................47  4.1. Eigenvalue distribution............................................................47  4.2. Negative spectrum...................................................................535. Homogeneous spaces..................................................................55References.......................................................................................581991 Mathematics Subject Classification: 46E35, 46E30, 41A46, 35P15, 35P20, 35J70.},
author = {Haroske Dorothee},
keywords = {negative spectra; compact embeddings; weighted function spaces; entropy numbers; estimate eigenvalues; Hörmander class; logarithmic Lebesgue spaces; Birman-Schwinger principle; space of homogeneous type},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Some logarithmic function spaces, entropy numbers, applications to spectral theory},
url = {http://eudml.org/doc/271248},
year = {1998},
}

TY - BOOK
AU - Haroske Dorothee
TI - Some logarithmic function spaces, entropy numbers, applications to spectral theory
PY - 1998
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractIn [18] and [19] we have studied compact embeddings of weighted function spaces on ℝⁿ, $id: H^s_q(w(x),ℝⁿ) → Lₚ(ℝⁿ)$, s>0, 1 < q ≤ p< ∞, s-n/q+n/p > 0, with, for example, $w(x) = ⟨x⟩^α$, α > 0, or $w(x) = log^β⟨x⟩$, β > 0, and $⟨x⟩ = (2+|x|²)^{1/2}$. We have determined the behaviour of their entropy numbers eₖ(id). Now we are interested in the limiting case 1/q = 1/p + s/n. Let $w(x) = log^β⟨x⟩$, β > 0. Our results in [18] imply that id cannot be compact for any β > 0, but after replacing the target space Lₚ(ℝⁿ) by a “slightly” larger one, $Lₚ(log L)_{-a}(ℝⁿ)$, a > 0, the corresponding embedding becomes compact and we can study its entropy numbers. We apply our result to estimate eigenvalues of the compact operator B = b₂ ∘ b(·,D) ∘ b₁ acting in some Lₚ space, where b(·,D) belongs to some Hörmander class $Ψ^{-ϰ}_{1,γ}$, ϰ > 0, 0 ≤ γ < 1, and b₁, b₂ are in (weighted) logarithmic Lebesgue spaces on ℝⁿ. Another application concerns the study of “negative spectra” via the Birman-Schwinger principle. The last part shows possible generalisations of the spaces $Lₚ(log L)_{-a}(ℝⁿ)$ with ℝⁿ replaced by a space of homogeneous type (X,δ,μ).CONTENTSIntroduction.........................................................................................51. Non-limiting embeddings - a short review........................................82. The spaces Lₚ(log L)ₐ on ℝⁿ.........................................................12  2.1. The spaces Lₚ(log L)ₐ(Ω) and $L_{p,q}(log L)ₐ(Ω)$................12  2.2. The spaces $Lₚ(log L)_{-a}(ℝⁿ)$, a > 0...................................20  2.3. The spaces Lₚ(log L)ₐ(ℝⁿ), a > 0.............................................27  2.4. Hölder inequalities...................................................................32  2.5. Examples.................................................................................353. Entropy numbers, limiting embeddings.........................................374. Applications..................................................................................47  4.1. Eigenvalue distribution............................................................47  4.2. Negative spectrum...................................................................535. Homogeneous spaces..................................................................55References.......................................................................................581991 Mathematics Subject Classification: 46E35, 46E30, 41A46, 35P15, 35P20, 35J70.
LA - eng
KW - negative spectra; compact embeddings; weighted function spaces; entropy numbers; estimate eigenvalues; Hörmander class; logarithmic Lebesgue spaces; Birman-Schwinger principle; space of homogeneous type
UR - http://eudml.org/doc/271248
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.