A second order unconditionally positive space-time residual distribution method for solving compressible flows on moving meshes

Dobeš, Jiří; Deconinck, Herman

  • Programs and Algorithms of Numerical Mathematics, Publisher: Institute of Mathematics AS CR(Prague), page 60-66

Abstract

top
A space-time formulation for unsteady inviscid compressible flow computations in 2D moving geometries is presented. The governing equations in Arbitrary Lagrangian-Eulerian formulation (ALE) are discretized on two layers of space-time finite elements connecting levels n , n + 1 / 2 and n + 1 . The solution is approximated with linear variation in space (P1 triangle) combined with linear variation in time. The space-time residual from the lower layer of elements is distributed to the nodes at level n + 1 / 2 with a limited variant of a positive first order scheme, ensuring monotonicity and second order of accuracy in smooth flow under a time-step restriction for the timestep of the first layer. The space-time residual from the upper layer of the elements is distributed to both levels n + 1 / 2 and n + 1 , with a similar scheme, giving monotonicity without any time-step restriction. The two-layer scheme allows a time marching procedure thanks to initial value condition imposed on the first layer of elements. The scheme is positive and second order accurate in space and time for arbitrary meshes and it satisfies the Geometric Conservation Law condition (GCL) by construction. Example calculations are shown for the Euler equations of inviscid gas dynamics, including the 1D problem of gas compression under a moving piston and transonic flow around an oscillating NACA0012 airfoil.

How to cite

top

Dobeš, Jiří, and Deconinck, Herman. "A second order unconditionally positive space-time residual distribution method for solving compressible flows on moving meshes." Programs and Algorithms of Numerical Mathematics. Prague: Institute of Mathematics AS CR, 2006. 60-66. <http://eudml.org/doc/271348>.

@inProceedings{Dobeš2006,
abstract = {A space-time formulation for unsteady inviscid compressible flow computations in 2D moving geometries is presented. The governing equations in Arbitrary Lagrangian-Eulerian formulation (ALE) are discretized on two layers of space-time finite elements connecting levels $n$, $n+1/2$ and $n+1$. The solution is approximated with linear variation in space (P1 triangle) combined with linear variation in time. The space-time residual from the lower layer of elements is distributed to the nodes at level $n+1/2$ with a limited variant of a positive first order scheme, ensuring monotonicity and second order of accuracy in smooth flow under a time-step restriction for the timestep of the first layer. The space-time residual from the upper layer of the elements is distributed to both levels $n+1/2$ and $n+1$, with a similar scheme, giving monotonicity without any time-step restriction. The two-layer scheme allows a time marching procedure thanks to initial value condition imposed on the first layer of elements. The scheme is positive and second order accurate in space and time for arbitrary meshes and it satisfies the Geometric Conservation Law condition (GCL) by construction. Example calculations are shown for the Euler equations of inviscid gas dynamics, including the 1D problem of gas compression under a moving piston and transonic flow around an oscillating NACA0012 airfoil.},
author = {Dobeš, Jiří, Deconinck, Herman},
booktitle = {Programs and Algorithms of Numerical Mathematics},
location = {Prague},
pages = {60-66},
publisher = {Institute of Mathematics AS CR},
title = {A second order unconditionally positive space-time residual distribution method for solving compressible flows on moving meshes},
url = {http://eudml.org/doc/271348},
year = {2006},
}

TY - CLSWK
AU - Dobeš, Jiří
AU - Deconinck, Herman
TI - A second order unconditionally positive space-time residual distribution method for solving compressible flows on moving meshes
T2 - Programs and Algorithms of Numerical Mathematics
PY - 2006
CY - Prague
PB - Institute of Mathematics AS CR
SP - 60
EP - 66
AB - A space-time formulation for unsteady inviscid compressible flow computations in 2D moving geometries is presented. The governing equations in Arbitrary Lagrangian-Eulerian formulation (ALE) are discretized on two layers of space-time finite elements connecting levels $n$, $n+1/2$ and $n+1$. The solution is approximated with linear variation in space (P1 triangle) combined with linear variation in time. The space-time residual from the lower layer of elements is distributed to the nodes at level $n+1/2$ with a limited variant of a positive first order scheme, ensuring monotonicity and second order of accuracy in smooth flow under a time-step restriction for the timestep of the first layer. The space-time residual from the upper layer of the elements is distributed to both levels $n+1/2$ and $n+1$, with a similar scheme, giving monotonicity without any time-step restriction. The two-layer scheme allows a time marching procedure thanks to initial value condition imposed on the first layer of elements. The scheme is positive and second order accurate in space and time for arbitrary meshes and it satisfies the Geometric Conservation Law condition (GCL) by construction. Example calculations are shown for the Euler equations of inviscid gas dynamics, including the 1D problem of gas compression under a moving piston and transonic flow around an oscillating NACA0012 airfoil.
UR - http://eudml.org/doc/271348
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.