Displaying similar documents to “A second order unconditionally positive space-time residual distribution method for solving compressible flows on moving meshes”

Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids

Peixin Zhang, Mingxuan Zhu (2022)

Applications of Mathematics

Similarity:

We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data u 0 H s - 1 + ε , w 0 H s - 1 and b 0 H s for s > 3 2 and any 0 < ε < 1 . The initial regularity of the micro-rotational velocity w is weaker than velocity of the fluid u .

Monotonicity of first eigenvalues along the Yamabe flow

Liangdi Zhang (2021)

Czechoslovak Mathematical Journal

Similarity:

We construct some nondecreasing quantities associated to the first eigenvalue of - Δ φ + c R ( c 1 2 ( n - 2 ) / ( n - 1 ) ) along the Yamabe flow, where Δ φ is the Witten-Laplacian operator with a C 2 function φ . We also prove a monotonic result on the first eigenvalue of - Δ φ + 1 4 ( n / ( n - 1 ) ) R along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of - Δ φ + c R a with a ( 0 , 1 ) along the Yamabe flow.

Three examples of brownian flows on

Yves Le Jan, Olivier Raimond (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We show that the only flow solving the stochastic differential equation (SDE) on d X t = 1 { X t g t ; 0 } W + ( d t ) + 1 { X t l t ; 0 } d W - ( d t ) , where W + and W - are two independent white noises, is a coalescing flow we will denote by ϕ ± . The flow ϕ ± is a Wiener solution of the SDE. Moreover, K + = 𝖤 [ δ ϕ ± | W + ] is the unique solution (it is also a Wiener solution) of the SDE K s , t + f ( x ) = f ( x ) + s t K s , u ( 1 + f ' ) ( x ) W + ( d u ) + 1 2 s t K s , u f ` ` ( x ) d u for s l t ; t , x and f a twice continuously differentiable function. A third flow ϕ + can be constructed out of the n -point motions of K + . This flow is coalescing and its n -point motion...

An attraction result and an index theorem for continuous flows on n × [ 0 , )

Klaudiusz Wójcik (1997)

Annales Polonici Mathematici

Similarity:

We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on E = n + 1 for which E = n × 0 is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in EE such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on n × [ 0 , ) .

The universal tropicalization and the Berkovich analytification

Jeffrey Giansiracusa, Noah Giansiracusa (2022)

Kybernetika

Similarity:

Given an integral scheme X over a non-archimedean valued field k , we construct a universal closed embedding of X into a k -scheme equipped with a model over the field with one element 𝔽 1 (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of X by previous work of the authors, and we show that the set-theoretic tropicalization of X with respect to this universal embedding is the Berkovich analytification X an . Moreover, using the scheme-theoretic...

On Schrödinger maps from T 1 to  S 2

Robert L. Jerrard, Didier Smets (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from T 1 to  S 2 . This estimate yields some continuity properties of the flow map for the topology of  L 2 ( T 1 , S 2 ) , provided one takes its quotient by the continuous group action of  T 1 given by translations. We also prove that without taking this quotient, for any t &gt; 0 the flow map at time t is discontinuous as a map from 𝒞 ( T 1 , S 2 ) , equipped with the weak topology of  H 1 / 2 , to the space of distributions ( 𝒞 ( T 1 , 3 ) ) * . The argument relies...

Purity of level m stratifications

Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be a field of characteristic p &gt; 0 . Let D m be a BT m over k (i.e., an m -truncated Barsotti–Tate group over k ). Let S be a k -scheme and let X be a BT m over S . Let S D m ( X ) be the subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to D m . If p 5 , we show that S D m ( X ) is pure in S , i.e. the immersion S D m ( X ) S is affine. For p { 2 , 3 } , we prove purity if D m satisfies a certain technical property depending only on its p -torsion D m [ p ] . For p 5 , we apply the developed techniques to show that...

Generalized gradient flow and singularities of the Riemannian distance function

Piermarco Cannarsa (2012-2013)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

Significant information about the topology of a bounded domain Ω of a Riemannian manifold M is encoded into the properties of the distance, d Ω , from the boundary of Ω . We discuss recent results showing the invariance of the singular set of the distance function with respect to the generalized gradient flow of d Ω , as well as applications to homotopy equivalence.

A symmetry problem in the calculus of variations

Graziano Crasta (2006)

Journal of the European Mathematical Society

Similarity:

We consider the integral functional J ( u ) = Ω [ f ( | D u | ) u ] d x , u W 0 1 , 1 ( Ω ) , where Ω n , n 2 , is a nonempty bounded connected open subset of n with smooth boundary, and s f ( | s | ) is a convex, differentiable function. We prove that if J admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball.

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

On the n -fold symmetric product of a space with a σ - ( P ) -property c n -network ( c k -network)

Luong Q. Tuyen, Ong V. Tuyen (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the relation between a space X satisfying certain generalized metric properties and its n -fold symmetric product n ( X ) satisfying the same properties. We prove that X has a σ - ( P ) -property c n -network if and only if so does n ( X ) . Moreover, if X is regular then X has a σ - ( P ) -property c k -network if and only if so does n ( X ) . By these results, we obtain that X is strict σ -space (strict -space) if and only if so is n ( X ) .