A nonlinear system of differential equations with distributed delays

Chocholatý, Pavol

  • Programs and Algorithms of Numerical Mathematics, Publisher: Institute of Mathematics AS CR(Prague), page 58-64

Abstract

top
It is well-known that the environments of most natural populations change with time and that such changes induce variation in the growth characteristics of population which is often modelled by delay differential equations, usually with time-varying delay. The purpose of this article is to derive a numerical solution of the delay differential system with continuously distributed delays based on a composition of p -step methods ( p = 1 , 2 , 3 , 4 , 5 ) and quadrature formulas. Some numerical results are presented compared to the known ones.

How to cite

top

Chocholatý, Pavol. "A nonlinear system of differential equations with distributed delays." Programs and Algorithms of Numerical Mathematics. Prague: Institute of Mathematics AS CR, 2010. 58-64. <http://eudml.org/doc/271429>.

@inProceedings{Chocholatý2010,
abstract = {It is well-known that the environments of most natural populations change with time and that such changes induce variation in the growth characteristics of population which is often modelled by delay differential equations, usually with time-varying delay. The purpose of this article is to derive a numerical solution of the delay differential system with continuously distributed delays based on a composition of $p$-step methods ($p=1,2,3,4,5$) and quadrature formulas. Some numerical results are presented compared to the known ones.},
author = {Chocholatý, Pavol},
booktitle = {Programs and Algorithms of Numerical Mathematics},
keywords = {delay differential equations; ordinary differential equations; Runge-Kutta methods; Newton-Cotes quadrature},
location = {Prague},
pages = {58-64},
publisher = {Institute of Mathematics AS CR},
title = {A nonlinear system of differential equations with distributed delays},
url = {http://eudml.org/doc/271429},
year = {2010},
}

TY - CLSWK
AU - Chocholatý, Pavol
TI - A nonlinear system of differential equations with distributed delays
T2 - Programs and Algorithms of Numerical Mathematics
PY - 2010
CY - Prague
PB - Institute of Mathematics AS CR
SP - 58
EP - 64
AB - It is well-known that the environments of most natural populations change with time and that such changes induce variation in the growth characteristics of population which is often modelled by delay differential equations, usually with time-varying delay. The purpose of this article is to derive a numerical solution of the delay differential system with continuously distributed delays based on a composition of $p$-step methods ($p=1,2,3,4,5$) and quadrature formulas. Some numerical results are presented compared to the known ones.
KW - delay differential equations; ordinary differential equations; Runge-Kutta methods; Newton-Cotes quadrature
UR - http://eudml.org/doc/271429
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.