Loading [MathJax]/extensions/MathZoom.js
It is well-known that the environments of most natural populations change with time and that such changes induce variation in the growth characteristics of population which is often modelled by delay differential equations, usually with
time-varying delay. The purpose of this article is to derive a numerical solution
of the delay differential system with continuously distributed delays based on
a composition of -step methods () and quadrature formulas. Some numerical results are presented compared...
In the present paper we study the approximate solutions of a certain difference-differential equation under the given initial conditions. The well known Gronwall-Bellman integral inequality is used to establish the results. Applications to a Volterra type difference-integral equation are also given.
This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...
This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...
This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...
In this paper Zadunaisky's technique is used to estimate the global error propagated in the numerical solution of the system of retarded differential equations by Euler's method. Some numerical examples are given.
The paper deals with a difference equation arising from the scalar pantograph equation via the backward Euler discretization. A case when the solution tends to zero but after reaching a certain index it loses this tendency is discussed. We analyse this problem and estimate the value of such an index. Furthermore, we show that the utilized proof technique enables us to investigate some other numerical formulae, too.
Currently displaying 1 –
9 of
9