Nonlinear multivalued boundary value problems

Ralf Bader; Nikolaos S. Papageorgiou

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2001)

  • Volume: 21, Issue: 1, page 127-148
  • ISSN: 1509-9407

Abstract

top
In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when d o m A N and d o m A = N , with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come from multivalued analysis and the theory of nonlinear monotone operators.

How to cite

top

Ralf Bader, and Nikolaos S. Papageorgiou. "Nonlinear multivalued boundary value problems." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 21.1 (2001): 127-148. <http://eudml.org/doc/271491>.

@article{RalfBader2001,
abstract = {In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when $domA ≠ ℝ^\{N\}$ and $domA = ℝ^\{N\}$, with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come from multivalued analysis and the theory of nonlinear monotone operators.},
author = {Ralf Bader, Nikolaos S. Papageorgiou},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {usc and lsc multifunction; measurable selection; Leray-Schauder alternative theorem; Sobolev space; compact embedding; maximal monotone map; coercive map; surjective map; convex and nonconvex problem; nonlinear boundary conditions; differential inclusions},
language = {eng},
number = {1},
pages = {127-148},
title = {Nonlinear multivalued boundary value problems},
url = {http://eudml.org/doc/271491},
volume = {21},
year = {2001},
}

TY - JOUR
AU - Ralf Bader
AU - Nikolaos S. Papageorgiou
TI - Nonlinear multivalued boundary value problems
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2001
VL - 21
IS - 1
SP - 127
EP - 148
AB - In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when $domA ≠ ℝ^{N}$ and $domA = ℝ^{N}$, with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come from multivalued analysis and the theory of nonlinear monotone operators.
LA - eng
KW - usc and lsc multifunction; measurable selection; Leray-Schauder alternative theorem; Sobolev space; compact embedding; maximal monotone map; coercive map; surjective map; convex and nonconvex problem; nonlinear boundary conditions; differential inclusions
UR - http://eudml.org/doc/271491
ER -

References

top
  1. [1] R. Bader, A topological fixed point theory for evolution inclusions, submitted. Zbl0985.34053
  2. [2] R. Bader and N.S. Papageorgiou, Quasilinear vector differential equations with maximal monotone terms and nonlinear boundary conditions, Annales Polonici Math. LXIII (2000), 69-93. Zbl0991.34013
  3. [3] L. Boccardo, P. Drabek, D. Giachetti and M. Kucera, Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. 10 (1986), 1083-1103. Zbl0623.34031
  4. [4] H. Dang and S.F. Oppenheimer, Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 198 (1996), 35-48. Zbl0855.34021
  5. [5] M. Del Pino, M. Elgueta and R. Manasevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for ( | u ' | p - 2 u ' ) ' + f ( t , u ) = 0 , u(0) = u(T) = 0, J. Diff. Eqns 80 (1989), 1-13. Zbl0708.34019
  6. [6] M. Del Pino, R. Manasevich and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e., Nonlinear Anal. 18 (1992), 79-92. Zbl0761.34032
  7. [7] L. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y(t),y'(t)), Annales Polonici Math. 54 (1991), 195-226. Zbl0731.34078
  8. [8] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), 207-227. Zbl0824.34026
  9. [9] M. Frigon, Theoremes d'existence des solutions d'inclusions differentielles, NATO ASI Series, section C, vol. 472, Kluwer, Dordrecht, The Netherlands (1995), 51-87. 
  10. [10] Z. Guo, Boundary value problems of a class of quasilinear ordinary differential equations, Diff. Integral Eqns 6 (1993), 705-719. Zbl0784.34018
  11. [11] N. Halidias and N.S. Papageorgiou, Existence and relaxation results for nonlinear second order multivalued boundary value problems in N , J. Diff. Eqns 147 (1998), 123-154. Zbl0912.34020
  12. [12] P. Hartman, Ordinary Differential Equations, J. Wiley, New York 1964. 
  13. [13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997. Zbl0887.47001
  14. [14] D. Kandilakis and N.S. Papageorgiou, Existence theorems for nonlinear boundary value problems for second order differential inclusions, J. Diff. Eqns 132 (1996), 107-125. Zbl0859.34011
  15. [15] R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Diff. Eqns 145 (1998), 367-393. Zbl0910.34051
  16. [16] M. Marcus and V. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces , Arch. Rational Mech. Anal. 45 (1972), 294-320. Zbl0236.46033
  17. [17] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990. Zbl0684.47029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.