Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y')
Annales Polonici Mathematici (1991)
- Volume: 54, Issue: 3, page 195-226
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topL. H. Erbe, and W. Krawcewicz. "Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y')." Annales Polonici Mathematici 54.3 (1991): 195-226. <http://eudml.org/doc/262452>.
@article{L1991,
abstract = {Applying the topological transversality method of Granas and the a priori bounds technique we prove some existence results for systems of differential inclusions of the form y'' ∈ F(t,y,y'), where F is a Carathéodory multifunction and y satisfies some nonlinear boundary conditions.},
author = {L. H. Erbe, W. Krawcewicz},
journal = {Annales Polonici Mathematici},
keywords = {boundary value problems; differential inclusion; topological transversality; nonlinear boundary conditions; Carathéodory multifunction; topological transversality method; a priori bounds technique},
language = {eng},
number = {3},
pages = {195-226},
title = {Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y')},
url = {http://eudml.org/doc/262452},
volume = {54},
year = {1991},
}
TY - JOUR
AU - L. H. Erbe
AU - W. Krawcewicz
TI - Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y,y')
JO - Annales Polonici Mathematici
PY - 1991
VL - 54
IS - 3
SP - 195
EP - 226
AB - Applying the topological transversality method of Granas and the a priori bounds technique we prove some existence results for systems of differential inclusions of the form y'' ∈ F(t,y,y'), where F is a Carathéodory multifunction and y satisfies some nonlinear boundary conditions.
LA - eng
KW - boundary value problems; differential inclusion; topological transversality; nonlinear boundary conditions; Carathéodory multifunction; topological transversality method; a priori bounds technique
UR - http://eudml.org/doc/262452
ER -
References
top- [1] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin 1984.
- [2] J. W. Bebernes and K. Schmitt, Periodic boundary value problems for systems of second order differential equations, J. Differential Equations 13 (1973), 33-47. Zbl0253.34020
- [3] J.-M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris 265 (1967), 333-336. Zbl0164.16803
- [4] H. Brezis, Analyse fonctionnelle, Théorie et applications, Masson, Paris 1982.
- [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, 1977.
- [6] M. Cecchi, M. Marini and P. Zecca, Asymptotic properties of the solutions of nonlinear equations with dichotomies and applications, Boll. Un. Mat. Ital. (6) 1-C (1982), 209-234. Zbl0511.34039
- [7] M. Cecchi, M. Marini and P. Zecca, Linear boundary value problems for systems of ordinary differential equations on non-compact intervals, I, II, Ann. Mat. Pura Appl. (4) 123 (1980), 267-285; 134 (1980), 367-379. Zbl0442.34016
- [8] A. Cellina and A. Lasota, A new approach to the definition of topological degree for multivalued mappings, Rend. Accad. Naz. Lincei 47 (1969), 434-440.
- [9] K. C. Chang, The obstacle problems and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), 117-146. Zbl0405.35074
- [10] J. Dugundji and A. Granas, Fixed Point Theory, Vol. 1, PWN, Warszawa 1982.
- [11] L. H. Erbe and H. W. Knobloch, Boundary value problems for systems of second order differential equations, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), 61-76. Zbl0582.34024
- [12] L. H. Erbe, W. Krawcewicz and S. Chen, Some existence results for solutions of differential inclusions with retardations, this issue, 227-239. Zbl0731.34079
- [13] L. H. Erbe and P. K. Palamides, Boundary value problems for second-order differential systems, J. Math. Anal. Appl. 127 (1) (1987), 80-92. Zbl0635.34017
- [14] L. H. Erbe and K. Schmitt, On solvability of boundary value problems for systems of differential equations, J. Appl. Math. Phys. 38 (1987), 184-192. Zbl0635.34016
- [15] C. Fabry, Nagumo conditions for systems of second order differential equations, J. Math. Anal. Appl. 107 (1985), 132-143. Zbl0604.34002
- [16] C. Fabry and P. Habets, The Picard boundary value problem for nonlinear second order vector differential equations, J. Differential Equations 42 (2) (1987), 186-198. Zbl0439.34018
- [17] M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires, Dissertationes Math. 296 (1990). Zbl0728.34017
- [18] R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. 568, Springer, 1977. Zbl0339.47031
- [19] K. Gęba, A. Granas, T. Kaczyński et W. Krawcewicz, Homotopie et équations non linéaires dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. I Math. 300 (10) (1985), 303-306. Zbl0585.47049
- [20] A. Granas, Homotopy extension theorem in Banach spaces and some of its applications to the theory of non-linear equations, Bull. Acad. Polon. Sci. 7 (1959), 387-394. Zbl0092.32302
- [21] A. Granas, Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris 287 (1976), 983-985.
- [22] A. Granas et Zine el Abdine Guennoun, Quelques résultats dans la théorie de Bernstein-Carathéodory de l'équation y'' = f(t,y,y'), C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 703-706.
- [23] A. Granas, R. B. Guenther and J. W. Lee, On a theorem of S. Bernstein, Pacific. J. Math. 74 (1978), 78-82.
- [24] A. Granas, R. B. Guenther and J. W. Lee, Nonlinear boundary value problems for some classes of ordinary differential equations, Rocky Mountain J. Math. 10 (1980), 35-58. Zbl0476.34017
- [25] A. Granas, R. B. Guenther and J. W. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1981).
- [26] A. Granas, R. B. Guenther and J. W. Lee, Topological transversality II; Applications to the Neumann problem for y'' = f(t,y,y'), Pacific J. Math. 104 (1983), 95-109. Zbl0534.34006
- [27] A. Granas, R. B. Guenther, J. W. Lee and D. O'Regan, Topological transversality III; Applications to the boundary value problems on infinite intervals and semiconductor devices, J. Math. Anal. Appl. 116 (1986), 335-348. Zbl0594.34019
- [28] J. Haddad and J. M. Lasry, Periodic solutions of functional differential inclusions and fixed points of G-selectionable correspondences, J. Math. Anal. Appl. 110 (1983), 295-312. Zbl0539.34031
- [29] P. Hartman, Ordinary Differential Equations, Wiley, New York 1964. Zbl0125.32102
- [30] T. Kaczyński, Topological transversality and nonlinear equations in locally convex spaces, 1987, preprint.
- [31] H. W. Knobloch, Boundary value problems for systems of nonlinear differential equations, in: Proc. Equadiff IV 1977, Lecture Notes in Math. 703, Springer, 1978, 197-204.
- [32] H. W. Knobloch and K. Schmitt, Nonlinear boundary value problems for systems of differential equations, Proc. Roy. Soc. Edinburgh Sect. A 78 (1977), 139-159. Zbl0368.34009
- [33] W. Krawcewicz, Contribution à la théorie des équations non linéaires dans les espaces de Banach, Dissertationes Math. 273 (1988). Zbl0677.47038
- [34] J. Mawhin and K. Schmitt, Upper and lower solutions and semilinear second order elliptic equations with non-linear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 199-207. Zbl0573.35029
- [35] T. Pruszko, Topological degree methods in multivalued boundary value problems, Nonlinear Anal. 5 (9) (1981), 953-973.
- [36] T. Pruszko, Some applications of the topological degree theory to multivalued boundary value problems, Dissertationes Math. 229 (1984). Zbl0543.34008
- [37] K. Schmitt, Boundary value problems for quasilinear second order elliptic equations, Nonlinear Anal. 2 (1978), 263-309. Zbl0378.35022
- [38] C. A. Stuart, Differential equations with discontinuous nonlinearities, Arch. Rational Mech. Anal. 63 (1976), 59-75. Zbl0393.34010
- [39] P. Zecca and P. L. Zecca, Nonlinear boundary value problems in Banach space for multivalued differential equations on a noncompact interval, Nonlinear Anal. 3 (1979), 347-352. Zbl0443.34060
Citations in EuDML Documents
top- Ralf Bader, Nikolaos S. Papageorgiou, Nonlinear multivalued boundary value problems
- Smaïl Djebali, Abdelghani Ouahab, Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory
- S. Carl, S. Heikkilä, On discontinuous implicit differential equations in ordered Banach spaces with discontinuous implicit boundary conditions
- Zdzisław Dzedzej, Equivariant degree of convex-valued maps applied to set-valued BVP
- Christopher C. Tisdell, Systems of differential inclusions in the absence of maximum principles and growth conditions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.