Approximation of set-valued functions by single-valued one

Ivan Ginchev; Armin Hoffmann

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2002)

  • Volume: 22, Issue: 1, page 33-66
  • ISSN: 1509-9407

How to cite

top

Ivan Ginchev, and Armin Hoffmann. "Approximation of set-valued functions by single-valued one." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 22.1 (2002): 33-66. <http://eudml.org/doc/271506>.

@article{IvanGinchev2002,
abstract = {},
author = {Ivan Ginchev, Armin Hoffmann},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Chebyshev approximation; set-valued functions; convex optimization},
language = {eng},
number = {1},
pages = {33-66},
title = {Approximation of set-valued functions by single-valued one},
url = {http://eudml.org/doc/271506},
volume = {22},
year = {2002},
}

TY - JOUR
AU - Ivan Ginchev
AU - Armin Hoffmann
TI - Approximation of set-valued functions by single-valued one
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2002
VL - 22
IS - 1
SP - 33
EP - 66
AB -
LA - eng
KW - Chebyshev approximation; set-valued functions; convex optimization
UR - http://eudml.org/doc/271506
ER -

References

top
  1. [1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, Heidelberg, New York, Tokyo 1984. Zbl0538.34007
  2. [2] P.K. Belobrov, K voprosu o chebyshevskom sentre mnozhestva, Izvestija vysshich uchebnych zavedenij 38 (1) (1964), 3-9. (in Russian) 
  3. [3] B. Bank, J. Guddat, D. Klatte, K. Kummer, K. Tammer, Non-Linear Parametric Optimization, Akademie Verlag Berlin 1982. Zbl0502.49002
  4. [4] F.H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, New York 1983. Zbl0582.49001
  5. [5] V.F. Demjanov and A.M. Rubinov, Constructive Nonsmooth Analysis, Verlag Peter Lang, Frankfurt am Main 1995. 
  6. [6] A.L. Garkavi, On the best net and the best cut of a set in a normed space, Izv. Akad. Nauk SSSR, Ser. Mat. 26 (1962), 87-106. (in Russian) Zbl0108.10801
  7. [7] A.L. Garkavi, On the Chebyshev center and the convex hull of a set, Usp. Mat. Nauk 19 (6) (1964), 139-145, (120). (in Russian) 
  8. [8] A.L. Garkavi, Minimax balayge theorem and an inscribed ball problem, Matematicheskie Zametki 30 (1) (1981), 109-121. (in Russian) 
  9. [9] I. Ginchev and A. Hoffmann, On the best approximation of set-valued functions, in: P. Gritzmann, R. Horst, E. Sachs, R. Tichatschke (eds.), Recent Advances in Optimization (Proc. of the 8th French-German Conference on Optimization, Trier, July 21-26, 1996, Lect. Notes Econ. Math. Syst. 452, Springer, Berlin Heidelberg 1997, 61-74. Zbl0882.41017
  10. [10] P.M. Gruber, The space of convex bodies, in: P.M. Gruber, J.M. Wills (eds.), Handbook of Convex Geometry, Volume A, North-Holland, Amsterdam 1993, 301-318. Zbl0791.52004
  11. [11] R. Hettich and P. Zencke, Numerische Methoden der Approximation und Semi-Infiniten Optimierung, B.G. Teubner, Leipzig 1982. Zbl0481.65033
  12. [12] A. Hoffmann, The distance to the intersection of two convex sets expressed by the distances to each of them, Math. Nachr. 157 (1992), 81-98. Zbl0773.52002
  13. [13] J.B. Hiriart Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer Verlag, Berlin 1993. 
  14. [14] R.B. Holmes, Geometric Functional Analysis and its Applications, Graduate Texts in Mathematics 24, Springer, New York-Heidelberg-Berlin 1975. Zbl0336.46001
  15. [15] R. Horst and H. Tuy, Global Optimization, Deterministic Approaches, Springer, Berlin etc. 1990. Zbl0704.90057
  16. [16] P. Kosmol, Optimierung und Approximation, Walter de Gruyter, Berlin 1991. 
  17. [17] P.J. Laurent, Approximation et Optimisation, Enseignement des Sciences 13, Hermann, Paris 1972. Zbl0238.90058
  18. [18] K. Leichtweiss, Konvexe Mengen, Deutscher Verlag der Wissenschaften, Berlin 1980. 
  19. [19] L.E. Rybiński, Continuous Selections and Variational Systems, Monografie 61, Institute of Mathematics, Higher College of Engineering, Zielona Góra, Poland 1992, 100 pp, ISSN 0239-7390. Zbl0789.54024
  20. [20] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, Grundlehren der mathematischen Wissenschaften 317, Springer, Berlin 1998. 
  21. [21] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren der mathematischen Wissenschaften 171, Springer, Berlin 1970. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.