From scalar to vector optimization

Ivan Ginchev; Angelo Guerraggio; Matteo Rocca

Applications of Mathematics (2006)

  • Volume: 51, Issue: 1, page 5-36
  • ISSN: 0862-7940

Abstract

top
Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem φ ( x ) min , x m , are given. These conditions work with arbitrary functions φ m ¯ , but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It is shown that the answer is affirmative if φ is of class 𝒞 1 , 1 (i.e., differentiable with locally Lipschitz derivative). Further, considering 𝒞 1 , 1 functions, the discussion is raised to unconstrained vector optimization problems. Using the so called “oriented distance” from a point to a set, we generalize to an arbitrary ordering cone some second-order necessary conditions and sufficient conditions given by Liu, Neittaanmäki, Křížek for a polyhedral cone. Furthermore, we show that the conditions obtained are sufficient not only for efficiency but also for strict efficiency.

How to cite

top

Ginchev, Ivan, Guerraggio, Angelo, and Rocca, Matteo. "From scalar to vector optimization." Applications of Mathematics 51.1 (2006): 5-36. <http://eudml.org/doc/33241>.

@article{Ginchev2006,
abstract = {Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem $\phi (x)\rightarrow \min $, $x\in \mathbb \{R\}^m$, are given. These conditions work with arbitrary functions $\phi \:\mathbb \{R\}^m \rightarrow \overline\{\mathbb \{R\}\}$, but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It is shown that the answer is affirmative if $\phi $ is of class $\{\mathcal \{C\}\}^\{1,1\}$ (i.e., differentiable with locally Lipschitz derivative). Further, considering $\{\mathcal \{C\}\}^\{1,1\}$ functions, the discussion is raised to unconstrained vector optimization problems. Using the so called “oriented distance” from a point to a set, we generalize to an arbitrary ordering cone some second-order necessary conditions and sufficient conditions given by Liu, Neittaanmäki, Křížek for a polyhedral cone. Furthermore, we show that the conditions obtained are sufficient not only for efficiency but also for strict efficiency.},
author = {Ginchev, Ivan, Guerraggio, Angelo, Rocca, Matteo},
journal = {Applications of Mathematics},
keywords = {scalar and vector optimization; $\{\mathcal \{C\}\}^\{1,1\}$ functions; Hadamard and Dini derivatives; second-order optimality conditions; Lagrange multipliers; scalar and vector optimization; functions; Hadamard and Dini derivatives},
language = {eng},
number = {1},
pages = {5-36},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {From scalar to vector optimization},
url = {http://eudml.org/doc/33241},
volume = {51},
year = {2006},
}

TY - JOUR
AU - Ginchev, Ivan
AU - Guerraggio, Angelo
AU - Rocca, Matteo
TI - From scalar to vector optimization
JO - Applications of Mathematics
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 1
SP - 5
EP - 36
AB - Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem $\phi (x)\rightarrow \min $, $x\in \mathbb {R}^m$, are given. These conditions work with arbitrary functions $\phi \:\mathbb {R}^m \rightarrow \overline{\mathbb {R}}$, but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It is shown that the answer is affirmative if $\phi $ is of class ${\mathcal {C}}^{1,1}$ (i.e., differentiable with locally Lipschitz derivative). Further, considering ${\mathcal {C}}^{1,1}$ functions, the discussion is raised to unconstrained vector optimization problems. Using the so called “oriented distance” from a point to a set, we generalize to an arbitrary ordering cone some second-order necessary conditions and sufficient conditions given by Liu, Neittaanmäki, Křížek for a polyhedral cone. Furthermore, we show that the conditions obtained are sufficient not only for efficiency but also for strict efficiency.
LA - eng
KW - scalar and vector optimization; ${\mathcal {C}}^{1,1}$ functions; Hadamard and Dini derivatives; second-order optimality conditions; Lagrange multipliers; scalar and vector optimization; functions; Hadamard and Dini derivatives
UR - http://eudml.org/doc/33241
ER -

References

top
  1. Second-order necessary conditions of the Kuhn-Tucker type in multiobjective programming problems, Control Cybern. 28 (1999), 213–224. (1999) Zbl0946.90075MR1752558
  2. Optimal Control, Consultants Bureau, New York, 1987 (Russian original: Optimal’noe upravlenie. Publ. Nauka, Moscow, 1979). (1987 (Russian original: Optimal’noe upravlenie. Publ. Nauka, Moscow, 1979)) MR0924574
  3. 10.1080/02331939708844332, Optimization 41 (1997), 159–172. (1997) MR1459915DOI10.1080/02331939708844332
  4. 10.1137/0322017, SIAM J.  Control Optimization 22 (1984), 239–254. (1984) Zbl0538.49020MR0732426DOI10.1137/0322017
  5. PC points and their application to vector optimization, PLISKA, Stud. Math. Bulg. 12 (1998), 21–30. (1998) MR1686508
  6. 10.1023/A:1022619928631, J.  Optimization Theory Appl. 98 (1998), 569–592. (1998) MR1640141DOI10.1023/A:1022619928631
  7. 10.1080/01630569408816587, Numer. Funct. Anal. Optimization 15 (1994), 689–693. (1994) MR1281568DOI10.1080/01630569408816587
  8. Minty variational inequality, efficiency and proper efficiency, Vietnam J.  Math. 32 (2004), 95–107. (2004) MR2052725
  9. Constructive Nonsmooth Analysis, Peter Lang, Frankfurt am Main, 1995. (1995) MR1325923
  10. 10.1080/02331930211986, Optimization 51 (2002), 47–72. (2002) Zbl1011.49014MR1926300DOI10.1080/02331930211986
  11. Equivalence on ( n + 1 ) -th order Peano and usual derivatives for n -convex functions, Real Anal. Exch. 25 (2000), 513–520. (2000) MR1779334
  12. On second-order conditions in vector optimization, Preprint 2002/32, Universitá dell’Insubria, Facoltà di Economia, Varese 2002, http://eco.uninsubria.it/dipeco/Quaderni/files/QF2002_32.pdf. 
  13. First-order conditions for C 0 , 1   constrained vector optimization, In: Variational Analysis and Applications, F. Giannessi, A.  Maugeri (eds.), Springer-Verlag, New York, 2005, pp. 427–450. (2005) MR2159985
  14. 10.7151/dmdico.1031, Discuss. Math., Differ. Incl., Control Optim. 22 (2002), 33–66. (2002) MR1961115DOI10.7151/dmdico.1031
  15. 10.1023/A:1017519922669, J.  Optimization Theory Appl. 109 (2001), 615–629. (2001) MR1835076DOI10.1023/A:1017519922669
  16. 10.1007/BF01442169, Appl. Math. Optimization 11 (1984), 43–56. (1984) MR0726975DOI10.1007/BF01442169
  17. New concepts in nondifferentiable programming, Analyse non convexe, Bull. Soc. Math. France 60 (1979), 57–85. (1979) Zbl0469.90071MR0562256
  18. 10.1287/moor.4.1.79, Math. Oper. Res. 4 (1979), 79–97. (1979) Zbl0409.90086MR0543611DOI10.1287/moor.4.1.79
  19. 10.1080/02331938808843333, Optimization 19 (1988), 169–179. (1988) MR0948388DOI10.1080/02331938808843333
  20. The second-order conditions of nondominated solutions for C 1 , 1   generalized multiobjective mathematical programming, Syst. Sci. Math. Sci. 4 (1991), 128–138. (1991) MR1119288
  21. 10.1023/A:1023068513188, Appl. Math. 42 (1997), 311–320. (1997) MR1453935DOI10.1023/A:1023068513188
  22. 10.1023/A:1022272728208, Appl. Math. 45 (2000), 381–397. (2000) MR1777017DOI10.1023/A:1022272728208
  23. Theory of Vector Optimization, Springer Verlag, Berlin, 1988. (1988) Zbl0654.90082
  24. 10.1137/0805032, SIAM J.  Optim. 5 (1995), 659–669. (1995) MR1344674DOI10.1137/0805032
  25. 10.1007/BF02843924, Rendiconti Circ. Mat. Palermo 50 (2001), 153–164. (2001) MR1825676DOI10.1007/BF02843924
  26. 10.1023/A:1016031214488, J.  Optimization Theory Appl. 114 (2002), 657–670. (2002) MR1921171DOI10.1023/A:1016031214488
  27. Sulla formola di Taylor, Atti Accad. Sci. Torino 27 (1891), 40-46. (1891) 
  28. Convex Analysis, Princeton University Press, Princeton, 1970. (1970) Zbl0193.18401MR0274683
  29. 10.1080/01630569308816543, Numer. Funct. Anal. Optimization 14 (1993), 621–632. (1993) MR1248132DOI10.1080/01630569308816543
  30. 10.1016/0362-546X(94)90218-6, Nonlinear Anal. 23 (1994), 767–784. (1994) Zbl0816.49008MR1298568DOI10.1016/0362-546X(94)90218-6
  31. 10.1080/02331939208843851, Optimization 26 (1992), 165–185. (1992) MR1236606DOI10.1080/02331939208843851
  32. 10.1137/S0363012902411532, SIAM J. Control Optimization 42 (2003), 1071–1086. (2003) Zbl1046.90084MR2002149DOI10.1137/S0363012902411532
  33. On two notions of proper efficiency, In: Optimization in Mathematical Physics, Pap. 11th Conf. Methods Techniques Math. Phys., Oberwolfach, Brokowski and Martensen (eds.), Peter Lang, Frankfurt am Main, 1987. (1987) Zbl0618.90089MR1036535

Citations in EuDML Documents

top
  1. Marie Dvorská, Karel Pastor, Necessary conditions for vector optimization in infinite dimension
  2. Marie Dvorská, Vector Optimization Results for -Stable Data
  3. Dušan Bednařík, Karel Pastor, A characterization of C 1 , 1 functions via lower directional derivatives
  4. Dušan Bednařík, Karel Pastor, Second-order sufficient condition for ˜ -stable functions
  5. Ivan Ginchev, Angelo Guerraggio, Matteo Rocca, Locally Lipschitz vector optimization with inequality and equality constraints
  6. Dušan Bednařík, Karel Pastor, Decrease of property in vector optimization
  7. Karel Pastor, Derivatives of Hadamard type in scalar constrained optimization

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.