Signal reconstruction from given phase of the Fourier transform using Fejér monotone methods
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2000)
- Volume: 20, Issue: 1, page 27-40
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996), 367-426. Zbl0865.47039
- [2] P.L. Combettes, Fejér-monotonicity in convex optimization, in: C.A. Floudas and P.M. Pardalos (eds.), Encyclopedia of Optimization, Kluwer Acad. Publ., Dordrecht 2000.
- [3] L.G. Gubin, B.T. Polyak and E.V. Raik, The method of projections for finding the common point of convex sets, USSR Comput. Math. Math. Phys. 7 (1967), 1-24.
- [4] M.H. Hayes, J.S. Lim and A.V. Oppenheim, Signal reconstruction from phase or magnitude, IEEE Trans. Acoust. Speech and Signal Process. ASSP-28 (1980), 672-680. Zbl0521.94004
- [5] M.H. Hayes, The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform, IEEE Trans. Acoust. Speech and Signal Process. ASSP-30 (1982), 140-154. Zbl0563.65084
- [6] A. Levi and H. Stark, Restoration from Phase and Magnitude by Generalized Projections, in: [] , Chapter 8, 277-320.
- [7] D. Schott, Iterative solution of convex problems by Fejér monotone methods, Numer. Funct. Anal. Optimiz. 16 (1995), 1323-1357. Zbl0853.65055
- [8] D. Schott, Basic properties of Fejér monotone mappings, Rostock. Math. Kolloq. 50 (1997), 71-84. Zbl0905.65068
- [9] D. Schott, Weak convergence of iterative methods generated by strongly Fejér monotone methods, Rostock. Math. Kolloq. 51 (1997), 83-96. Zbl0890.65055
- [10] D. Schott, About strongly Fejér monotone mappings and their relaxations, Zeitschr. Anal. Anw. 16 (1997), 709-726. Zbl0882.65043
- [11] H. Stark (ed.), Image recovery: Theory and applications, Academic Press, New York 1987.
- [12] D.C. Youla, Mathematical Theory of Image Restoration by the Method of Convex Projections, in: [11], Chapter 2, 29-76.