Multilevel correction adaptive finite element method for semilinear elliptic equation
Applications of Mathematics (2015)
- Volume: 60, Issue: 5, page 527-550
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLin, Qun, Xie, Hehu, and Xu, Fei. "Multilevel correction adaptive finite element method for semilinear elliptic equation." Applications of Mathematics 60.5 (2015): 527-550. <http://eudml.org/doc/271565>.
@article{Lin2015,
abstract = {A type of adaptive finite element method is presented for semilinear elliptic problems based on multilevel correction scheme. The main idea of the method is to transform the semilinear elliptic equation into a sequence of linearized boundary value problems on the adaptive partitions and some semilinear elliptic problems on very low dimensional finite element spaces. Hence, solving the semilinear elliptic problem can reach almost the same efficiency as the adaptive method for the associated boundary value problem. The convergence and optimal complexity of the new scheme can be derived theoretically and demonstrated numerically.},
author = {Lin, Qun, Xie, Hehu, Xu, Fei},
journal = {Applications of Mathematics},
keywords = {semilinear elliptic problem; multilevel correction; adaptive finite element method; semilinear elliptic problem; multilevel correction; adaptive finite element method},
language = {eng},
number = {5},
pages = {527-550},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multilevel correction adaptive finite element method for semilinear elliptic equation},
url = {http://eudml.org/doc/271565},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Lin, Qun
AU - Xie, Hehu
AU - Xu, Fei
TI - Multilevel correction adaptive finite element method for semilinear elliptic equation
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 5
SP - 527
EP - 550
AB - A type of adaptive finite element method is presented for semilinear elliptic problems based on multilevel correction scheme. The main idea of the method is to transform the semilinear elliptic equation into a sequence of linearized boundary value problems on the adaptive partitions and some semilinear elliptic problems on very low dimensional finite element spaces. Hence, solving the semilinear elliptic problem can reach almost the same efficiency as the adaptive method for the associated boundary value problem. The convergence and optimal complexity of the new scheme can be derived theoretically and demonstrated numerically.
LA - eng
KW - semilinear elliptic problem; multilevel correction; adaptive finite element method; semilinear elliptic problem; multilevel correction; adaptive finite element method
UR - http://eudml.org/doc/271565
ER -
References
top- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65. A Series of Monographs and Textbooks Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Babuška, I., Miller, A., 10.1016/0045-7825(87)90114-9, Comput. Methods Appl. Mech. Eng. 61 (1987), 1-40. (1987) Zbl0593.65064MR0880421DOI10.1016/0045-7825(87)90114-9
- Babuška, I., Rheinboldt, W. C., 10.1137/0715049, SIAM J. Numer. Anal. 15 (1978), 736-754. (1978) Zbl0398.65069MR0483395DOI10.1137/0715049
- Babuška, I., Strouboulis, T., The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation Clarendon Press, Oxford (2001). (2001) MR1857191
- Babuška, I., Vogelius, M., 10.1007/BF01389757, Numer. Math. 44 (1984), 75-102. (1984) Zbl0574.65098MR0745088DOI10.1007/BF01389757
- Brenner, S. C., Scott, L. R., 10.1007/978-1-4757-4338-8_7, Texts in Applied Mathematics 15 Springer, New York (1994). (1994) Zbl0804.65101MR1278258DOI10.1007/978-1-4757-4338-8_7
- Cascon, J. M., Kreuzer, C., Nochetto, R. H., Siebert, K. G., 10.1137/07069047X, SIAM J. Numer. Anal. 46 (2008), 2524-2550. (2008) Zbl1176.65122MR2421046DOI10.1137/07069047X
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- Dörfler, W., 10.1137/0733054, SIAM J. Numer. Anal. 33 (1996), 1106-1124. (1996) Zbl0854.65090MR1393904DOI10.1137/0733054
- He, L., Zhou, A., Convergence and optimal complexity of adaptive finite element methods for elliptic partial differential equations, Int. J. Numer. Anal. Model. 8 (2011), 615-640. (2011) MR2805661
- Holst, M., McCammom, J. A., Yu, Z., Zhou, Y., Zhu, Y., 10.4208/cicp.081009.130611a, Commun. Comput. Phys. 11 (2012), 179-214. (2012) MR2841952DOI10.4208/cicp.081009.130611a
- Lin, Q., Xie, H., A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems, Proc. Internat. Conference `Applications of Mathematics', Prague, 2012. In Honor of the 60th Birthday of M. Křížek Academy of Sciences of the Czech Republic, Institute of Mathematics, Prague (2012), 134-143 J. Brandts et al. (2012) Zbl1313.65298MR3204407
- Lin, Q., Xie, H., 10.1090/S0025-5718-2014-02825-1, Math. Comput. 84 (2015), 71-88. (2015) Zbl1307.65159MR3266953DOI10.1090/S0025-5718-2014-02825-1
- Mekchay, K., Nochetto, R. H., 10.1137/04060929X, SIAM J. Numer. Anal. 43 (2005), 1803-1827. (2005) Zbl1104.65103MR2192319DOI10.1137/04060929X
- Morin, P., Nochetto, R. H., Siebert, K. G., 10.1137/S0036142999360044, SIAM J. Numer. Anal. 38 (2000), 466-488. (2000) Zbl0970.65113MR1770058DOI10.1137/S0036142999360044
- Morin, P., Nochetto, R. H., Siebert, K. G., 10.1137/S0036144502409093, SIAM Rev. 44 (2002), 631-658. (2002) Zbl1016.65074MR1980447DOI10.1137/S0036144502409093
- Stevenson, R., 10.1007/s10208-005-0183-0, Found. Comput. Math. 7 (2007), 245-269. (2007) Zbl1136.65109MR2324418DOI10.1007/s10208-005-0183-0
- Stevenson, R., 10.1090/S0025-5718-07-01959-X, Math. Comput. 77 (2008), 227-241. (2008) Zbl1131.65095MR2353951DOI10.1090/S0025-5718-07-01959-X
- Xie, H., A multilevel correction type of adaptive finite element method for eigenvalue problems, ArXiv:1201.2308 (2012). (2012) MR3204407
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.