Feedback and Adaptive Finite Element Solution of One-Dimenional Boundary Value Problems.
Numerische Mathematik (1984)
- Volume: 44, page 75-102
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topBabuska, I., and Vogelius, M.. "Feedback and Adaptive Finite Element Solution of One-Dimenional Boundary Value Problems.." Numerische Mathematik 44 (1984): 75-102. <http://eudml.org/doc/132920>.
@article{Babuska1984,
author = {Babuska, I., Vogelius, M.},
journal = {Numerische Mathematik},
keywords = {feedback; adaptivity; finite element method},
pages = {75-102},
title = {Feedback and Adaptive Finite Element Solution of One-Dimenional Boundary Value Problems.},
url = {http://eudml.org/doc/132920},
volume = {44},
year = {1984},
}
TY - JOUR
AU - Babuska, I.
AU - Vogelius, M.
TI - Feedback and Adaptive Finite Element Solution of One-Dimenional Boundary Value Problems.
JO - Numerische Mathematik
PY - 1984
VL - 44
SP - 75
EP - 102
KW - feedback; adaptivity; finite element method
UR - http://eudml.org/doc/132920
ER -
Citations in EuDML Documents
top- Markus Aurada, Michael Feischl, Dirk Praetorius, Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems
- Markus Aurada, Michael Feischl, Dirk Praetorius, Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems
- Serge Nicaise, Sarah Cochez-Dhondt, Adaptive finite element methods for elliptic problems: Abstract framework and applications
- Qun Lin, Hehu Xie, Fei Xu, Multilevel correction adaptive finite element method for semilinear elliptic equation
- M. Aurada, M. Feischl, J. Kemetmüller, M. Page, D. Praetorius, Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.