Abelian analytic torsion and symplectic volume
Archivum Mathematicum (2015)
- Volume: 051, Issue: 3, page 175-187
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMcLellan, B.D.K.. "Abelian analytic torsion and symplectic volume." Archivum Mathematicum 051.3 (2015): 175-187. <http://eudml.org/doc/271567>.
@article{McLellan2015,
abstract = {This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.},
author = {McLellan, B.D.K.},
journal = {Archivum Mathematicum},
keywords = {analytic torsion; contact torsion; Chern-Simons theory; Sasakian three-manifold; quantum field theory},
language = {eng},
number = {3},
pages = {175-187},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Abelian analytic torsion and symplectic volume},
url = {http://eudml.org/doc/271567},
volume = {051},
year = {2015},
}
TY - JOUR
AU - McLellan, B.D.K.
TI - Abelian analytic torsion and symplectic volume
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 3
SP - 175
EP - 187
AB - This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.
LA - eng
KW - analytic torsion; contact torsion; Chern-Simons theory; Sasakian three-manifold; quantum field theory
UR - http://eudml.org/doc/271567
ER -
References
top- Atiyah, M.F., Patodi, V., Singer, I., 10.1017/S0305004100049410, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. (1975) Zbl0297.58008MR0397797DOI10.1017/S0305004100049410
- Atiyah, M.F., Patodi, V., Singer, I., 10.1017/S0305004100051872, Math. Proc. Cambridge Philos. Soc. 78 (1975), 405–432. (1975) Zbl0314.58016MR0397798DOI10.1017/S0305004100051872
- Beasley, C., Witten, E., Non-abelian localization for Chern-Simons theory, J. Differential Geom. 70 (2005), 183–323. (2005) Zbl1097.58012MR2192257
- Belov, D. M., Moore, G.W., Classification of abelian spin Chern-Simons theories, hep-th/0505235, (2005).
- Boyer, C.P., Galicki, K., Sasakian Geometry, Oxford University Press, 2008. (2008) Zbl1155.53002MR2382957
- Braverman, M., 10.1023/A:1021227705930, Ann. Global Anal. Geom. 23 (1) (2002), 77–92. (2002) MR1952860DOI10.1023/A:1021227705930
- Cheeger, J., 10.2307/1971113, Ann. of Math. 109 (1979), 259–300. (1979) Zbl0412.58026MR0528965DOI10.2307/1971113
- Dijkgraaf, R., Witten, E., 10.1007/BF02096988, Comm. Math. Phys. 129 (1990), 486–522. (1990) Zbl0703.58011MR1048699DOI10.1007/BF02096988
- Dragomir, S., Tomassini, G., Differential Geometry and Analysis on CR Manifolds, Progr. Math., vol. 246, Birkhäuser, Basel, 2006. (2006) Zbl1099.32008MR2214654
- Furata, M., Steer, B., 10.1016/0001-8708(92)90051-L, Adv. Math. 96 (1) (1992), 38–102. (1992) MR1185787DOI10.1016/0001-8708(92)90051-L
- Jeffrey, L.C., McLellan, B.D.K., Non-abelian localization for Chern-Simons theory, Geometric Aspects of Analysis and Mechanics, Conf. Proc. (in honour of the birthday of Hans Duistermaat), Birkhäuser, 2009. (2009) MR2809473
- Kawasaki, T., The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math. 16 (1) (1979), 151–159. (1979) Zbl0405.32010MR0527023
- Kirk, P., Klassen, E., 10.1007/BF02096952, Comm. Math. Phys. 153 (3) (1993), 521–557. (1993) MR1218931DOI10.1007/BF02096952
- McLellan, B.D.K., Localization in abelian Chern-Simons theory, J. Math. Phys. 54 (2013), arXiv:1208.1724[math-ph]. (2013) Zbl1280.81102MR3076394
- Müller, W., 10.1016/0001-8708(78)90116-0, Adv. Math. 28 (1978), 233–305. (1978) DOI10.1016/0001-8708(78)90116-0
- Neumann, W.D., Raymond, F., 10.1007/BFb0061699, Proc. Sympos., Univ. California, Santa Barbara, California, Lecture Notes in Math., 664, Springer, Berlin, (1978), 163–196, 1977. (1977) MR0518415DOI10.1007/BFb0061699
- Nicolaescu, L.I., 10.4310/CAG.2000.v8.n5.a3, Comm. Anal. Geom. 8 (5) (2000), 1027–1096. (2000) Zbl1001.58004MR1846125DOI10.4310/CAG.2000.v8.n5.a3
- Orlik, P., Seifert Manifolds, Lecture Notes in Math., Springer-Verlag, Berlin, 1972. (1972) Zbl0263.57001MR0426001
- Orlik, P., Vogt, E., Zieschang, H., 10.1016/0040-9383(67)90013-4, Topology 6 (1967), 49–64. (1967) Zbl0147.23503MR0212831DOI10.1016/0040-9383(67)90013-4
- Prasolov, V.V., Sossinsky, A.B., Knots, links, braids and 3-manifolds: An introduction to the new invariants in low-dimensional topology, Amer. Math. Soc. (1996), Vol. 154 of Translations of Mathematical Monographs. (1996) MR1414898
- Ray, D., Singer, I., Analytic torsion, Proc. Sympos. Pure Math. 23 (1973), 167–182. (1973) Zbl0273.58014MR0339293
- Reidemeister, K., Überdeckungen von Komplexen, J. Reine Angew. Math. 173 (1935), 164–173. (1935) Zbl0012.12604
- Rumin, M., Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (2) (1994), 281–330. (1994) Zbl0973.53524MR1267892
- Rumin, M., Seshadri, N., 10.5802/aif.2693, Ann. Inst. Fourier 62 (2012), 727–782. (2012) Zbl1264.58027MR2985515DOI10.5802/aif.2693
- Schwarz, A.S., 10.1007/BF01223197, Comm. Math. Phys. 67 (1979), 1–16. (1979) MR0535228DOI10.1007/BF01223197
- Williams, F.L., Lectures on zeta functions, L-functions and modular forms with some physical applications, A window into zeta and modular physics, MSRI Publications, 2010. (2010) Zbl1225.11105MR2648361
- Witten, E., Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661–692. (1982) Zbl0499.53056MR0683171
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.