Abelian analytic torsion and symplectic volume

B.D.K. McLellan

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 3, page 175-187
  • ISSN: 0044-8753

Abstract

top
This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.

How to cite

top

McLellan, B.D.K.. "Abelian analytic torsion and symplectic volume." Archivum Mathematicum 051.3 (2015): 175-187. <http://eudml.org/doc/271567>.

@article{McLellan2015,
abstract = {This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.},
author = {McLellan, B.D.K.},
journal = {Archivum Mathematicum},
keywords = {analytic torsion; contact torsion; Chern-Simons theory; Sasakian three-manifold; quantum field theory},
language = {eng},
number = {3},
pages = {175-187},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Abelian analytic torsion and symplectic volume},
url = {http://eudml.org/doc/271567},
volume = {051},
year = {2015},
}

TY - JOUR
AU - McLellan, B.D.K.
TI - Abelian analytic torsion and symplectic volume
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 3
SP - 175
EP - 187
AB - This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.
LA - eng
KW - analytic torsion; contact torsion; Chern-Simons theory; Sasakian three-manifold; quantum field theory
UR - http://eudml.org/doc/271567
ER -

References

top
  1. Atiyah, M.F., Patodi, V., Singer, I., 10.1017/S0305004100049410, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. (1975) Zbl0297.58008MR0397797DOI10.1017/S0305004100049410
  2. Atiyah, M.F., Patodi, V., Singer, I., 10.1017/S0305004100051872, Math. Proc. Cambridge Philos. Soc. 78 (1975), 405–432. (1975) Zbl0314.58016MR0397798DOI10.1017/S0305004100051872
  3. Beasley, C., Witten, E., Non-abelian localization for Chern-Simons theory, J. Differential Geom. 70 (2005), 183–323. (2005) Zbl1097.58012MR2192257
  4. Belov, D. M., Moore, G.W., Classification of abelian spin Chern-Simons theories, hep-th/0505235, (2005). 
  5. Boyer, C.P., Galicki, K., Sasakian Geometry, Oxford University Press, 2008. (2008) Zbl1155.53002MR2382957
  6. Braverman, M., 10.1023/A:1021227705930, Ann. Global Anal. Geom. 23 (1) (2002), 77–92. (2002) MR1952860DOI10.1023/A:1021227705930
  7. Cheeger, J., 10.2307/1971113, Ann. of Math. 109 (1979), 259–300. (1979) Zbl0412.58026MR0528965DOI10.2307/1971113
  8. Dijkgraaf, R., Witten, E., 10.1007/BF02096988, Comm. Math. Phys. 129 (1990), 486–522. (1990) Zbl0703.58011MR1048699DOI10.1007/BF02096988
  9. Dragomir, S., Tomassini, G., Differential Geometry and Analysis on CR Manifolds, Progr. Math., vol. 246, Birkhäuser, Basel, 2006. (2006) Zbl1099.32008MR2214654
  10. Furata, M., Steer, B., 10.1016/0001-8708(92)90051-L, Adv. Math. 96 (1) (1992), 38–102. (1992) MR1185787DOI10.1016/0001-8708(92)90051-L
  11. Jeffrey, L.C., McLellan, B.D.K., Non-abelian localization for U ( 1 ) Chern-Simons theory, Geometric Aspects of Analysis and Mechanics, Conf. Proc. (in honour of the birthday of Hans Duistermaat), Birkhäuser, 2009. (2009) MR2809473
  12. Kawasaki, T., The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math. 16 (1) (1979), 151–159. (1979) Zbl0405.32010MR0527023
  13. Kirk, P., Klassen, E., 10.1007/BF02096952, Comm. Math. Phys. 153 (3) (1993), 521–557. (1993) MR1218931DOI10.1007/BF02096952
  14. McLellan, B.D.K., Localization in abelian Chern-Simons theory, J. Math. Phys. 54 (2013), arXiv:1208.1724[math-ph]. (2013) Zbl1280.81102MR3076394
  15. Müller, W., 10.1016/0001-8708(78)90116-0, Adv. Math. 28 (1978), 233–305. (1978) DOI10.1016/0001-8708(78)90116-0
  16. Neumann, W.D., Raymond, F., 10.1007/BFb0061699, Proc. Sympos., Univ. California, Santa Barbara, California, Lecture Notes in Math., 664, Springer, Berlin, (1978), 163–196, 1977. (1977) MR0518415DOI10.1007/BFb0061699
  17. Nicolaescu, L.I., 10.4310/CAG.2000.v8.n5.a3, Comm. Anal. Geom. 8 (5) (2000), 1027–1096. (2000) Zbl1001.58004MR1846125DOI10.4310/CAG.2000.v8.n5.a3
  18. Orlik, P., Seifert Manifolds, Lecture Notes in Math., Springer-Verlag, Berlin, 1972. (1972) Zbl0263.57001MR0426001
  19. Orlik, P., Vogt, E., Zieschang, H., 10.1016/0040-9383(67)90013-4, Topology 6 (1967), 49–64. (1967) Zbl0147.23503MR0212831DOI10.1016/0040-9383(67)90013-4
  20. Prasolov, V.V., Sossinsky, A.B., Knots, links, braids and 3-manifolds: An introduction to the new invariants in low-dimensional topology, Amer. Math. Soc. (1996), Vol. 154 of Translations of Mathematical Monographs. (1996) MR1414898
  21. Ray, D., Singer, I., Analytic torsion, Proc. Sympos. Pure Math. 23 (1973), 167–182. (1973) Zbl0273.58014MR0339293
  22. Reidemeister, K., Überdeckungen von Komplexen, J. Reine Angew. Math. 173 (1935), 164–173. (1935) Zbl0012.12604
  23. Rumin, M., Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (2) (1994), 281–330. (1994) Zbl0973.53524MR1267892
  24. Rumin, M., Seshadri, N., 10.5802/aif.2693, Ann. Inst. Fourier 62 (2012), 727–782. (2012) Zbl1264.58027MR2985515DOI10.5802/aif.2693
  25. Schwarz, A.S., 10.1007/BF01223197, Comm. Math. Phys. 67 (1979), 1–16. (1979) MR0535228DOI10.1007/BF01223197
  26. Williams, F.L., Lectures on zeta functions, L-functions and modular forms with some physical applications, A window into zeta and modular physics, MSRI Publications, 2010. (2010) Zbl1225.11105MR2648361
  27. Witten, E., Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661–692. (1982) Zbl0499.53056MR0683171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.