Analytic torsions on contact manifolds
Michel Rumin[1]; Neil Seshadri[2]
- [1] Laboratoire de Mathématiques d’Orsay CNRS et Université Paris Sud 91405 Orsay Cedex France
- [2] Graduate School of Mathematical Sciences The University of Tokyo 3–8– 1 Komaba, Meguro, Tokyo 150-0044 Japan
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 727-782
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRumin, Michel, and Seshadri, Neil. "Analytic torsions on contact manifolds." Annales de l’institut Fourier 62.2 (2012): 727-782. <http://eudml.org/doc/251147>.
@article{Rumin2012,
abstract = {We propose a definition for analytic torsion of the contact complex on contact manifolds. We show it coincides with Ray–Singer torsion on any $3$-dimensional CR Seifert manifold equipped with a unitary representation. In this particular case we compute it and relate it to dynamical properties of the Reeb flow. In fact the whole spectral torsion function we consider may be interpreted on CR Seifert manifolds as a purely dynamical function through Selberg-like trace formulae, that hold also in variable curvature.},
affiliation = {Laboratoire de Mathématiques d’Orsay CNRS et Université Paris Sud 91405 Orsay Cedex France; Graduate School of Mathematical Sciences The University of Tokyo 3–8– 1 Komaba, Meguro, Tokyo 150-0044 Japan},
author = {Rumin, Michel, Seshadri, Neil},
journal = {Annales de l’institut Fourier},
keywords = {analytic torsion; contact complex; CR Seifert manifold; trace formula},
language = {eng},
number = {2},
pages = {727-782},
publisher = {Association des Annales de l’institut Fourier},
title = {Analytic torsions on contact manifolds},
url = {http://eudml.org/doc/251147},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Rumin, Michel
AU - Seshadri, Neil
TI - Analytic torsions on contact manifolds
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 727
EP - 782
AB - We propose a definition for analytic torsion of the contact complex on contact manifolds. We show it coincides with Ray–Singer torsion on any $3$-dimensional CR Seifert manifold equipped with a unitary representation. In this particular case we compute it and relate it to dynamical properties of the Reeb flow. In fact the whole spectral torsion function we consider may be interpreted on CR Seifert manifolds as a purely dynamical function through Selberg-like trace formulae, that hold also in variable curvature.
LA - eng
KW - analytic torsion; contact complex; CR Seifert manifold; trace formula
UR - http://eudml.org/doc/251147
ER -
References
top- C. Bär, S. Moroianu, Heat kernel asymptotics for roots of generalized Laplacians, Internat. J. Math. 14 (2003), 397-412 Zbl1079.58020MR1984660
- R. J. Baston, M. G. Eastwood, The Penrose transform: Its interaction with representation theory, (1989), The Clarendon Press, Oxford University Press, New York Zbl0726.58004MR1038279
- R. Beals, P. Greiner, Calculus on Heisenberg manifolds, 119 (1988), Princeton University Press, Princeton, NJ Zbl0654.58033MR953082
- R. Beals, P. C. Greiner, N. K. Stanton, The heat equation and geometry of CR manifolds, Bull. Amer. Math. Soc. (N.S.) 10 (1984), 275-276 Zbl0543.58024MR733694
- F. A. Belgun, Normal CR structures on , Math. Z. 244 (2003), 123-151 Zbl1044.32027MR1981879
- O. Biquard, M. Herzlich, Burns-Epstein invariant for ACHE 4-manifolds, Duke Math. J. 126 (2005), 53-100 Zbl1074.53037MR2110628
- O. Biquard, M. Herzlich, M. Rumin, Diabatic limit, eta invariants and Cauchy-Riemann manifolds of dimension , Ann. Sci. Ecole Norm. Sup. (4) 40 (2007), 589-631 Zbl1188.32010MR2191527
- J.-M. Bismut, The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc. 18 (2005), 379-476 (electronic) Zbl1065.35098MR2137981
- J.-M. Bismut, Loop spaces and the hypoelliptic Laplacian, Comm. Pure Appl. Math. 61 (2008), 559-593 Zbl1147.58038MR2383933
- J.-M. Bismut, H. Gillet, Soulé C., Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), 49-78 Zbl0651.32017MR929146
- J.-M. Bismut, H. Gillet, Soulé C., Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988), 301-351 Zbl0651.32017MR931666
- J.-M. Bismut, G. Lebeau, The hypoelliptic Laplacian and Ray-Singer metrics, 167 (2008), Princeton University Press, Princeton, NJ Zbl1156.58001MR2441523
- J.-M. Bismut, W. Zhang, An extension of a theorem by Cheeger and Müller. With an appendix by François Laudenbach, (1992), Astérisque Zbl0781.58039MR1185803
- T. Branson, -curvature and spectral invariants, Rend. Circ. Mat. Palermo (2) Suppl. (2005), 11-55 MR2152355
- J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), 259-322 Zbl0412.58026MR528965
- D. Fried, Lefschetz formulas for flows, The Lefschetz centennial conference, Part III 58 (1987), 19-69, Amer. Math. Soc., Providence, RI, Mexico City, 1984 Zbl0619.58034MR893856
- D. Fried, Counting circles, Dynamical systems (College Park, MD, 1986–87) 1342 (1988), 196-215, Springer, Berlin Zbl0662.58033MR970556
- D. Fried, Torsion and closed geodesics on complex hyperbolic manifolds, Invent. Math. 91 (1988), 31-51 Zbl0658.53061MR918235
- F. B. Fuller, An index of fixed point type for periodic orbits, Amer. J. Math. 89 (1967), 133-148 Zbl0152.40204MR209600
- M. Furuta, B. Steer, Seifert fibred homology -spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992), 38-102 Zbl0769.58009MR1185787
- E. Getzler, An analogue of Demailly’s inequality for strictly pseudoconvex CR manifolds., J. Differential Geom. 29 (1989), 231-244 Zbl0714.58053MR982172
- P. B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, 11 (1984), Publish or Perish Inc., Wilmington, DE Zbl0565.58035MR783634
- P. Julg, G. Kasparov, Operator -theory for the group , J. Reine Angew. Math. 463 (1995), 99-152 Zbl0819.19004MR1332908
- C. Kassel, Le résidu non commutatif (d’après M. Wodzicki), , (177-178):Exp. No. 708, 199–229, 1989. Séminaire Bourbaki (Vol. 1988/89) Zbl0701.58054MR1040574
- F. F. Knudsen, D. Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), 19-55 Zbl0343.14008MR437541
- J. W. Milnor, J. D. Stasheff, Characteristic classes, 76 (1974), Princeton University Press, Princeton, NJ Zbl0298.57008MR440554
- H. Moscovici, R. J. Stanton, -torsion and zeta functions for locally symmetric manifolds, Invent. Math. 105 (1991), 185-216 Zbl0789.58073MR1109626
- W. Müller, Analytic torsion and -torsion of Riemannian manifolds, Adv. Math. 28 (1978), 233-305 Zbl0395.57011MR498252
- L. I. Nicolaescu, Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations, Comm. Anal. Geom. 8 (2000), 1027-1096 Zbl1001.58004MR1846125
- R. Ponge, Noncommutative residue for Heisenberg manifolds. Applications in CR and contact geometry, J. Funct. Anal. 252 (2007), 399-463 Zbl1127.58024MR2360923
- R. S. Ponge, Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, 194, no 906 (2008), Mem. Amer. Math. Soc. Zbl1143.58014MR2417549
- D. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funct. Anal. Appl. 214 (1985), 31-34 Zbl0603.32016MR783704
- D. B. Ray, I. M. Singer, -torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145-210 Zbl0239.58014MR295381
- C. Rockland, Hypoellipticity on the Heisenberg group–representation-theoretic criteria, Trans. Amer. Math. Soc. 240 (1978), 1-52 Zbl0326.22007MR486314
- S. Rosenberg, The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds, 31 (1997), Cambridge University Press, Cambridge Zbl0868.58074MR1462892
- M. Rumin, Un complexe de formes différentielles sur les variétés de contact, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 101-404 Zbl0694.57010MR1046521
- M. Rumin, Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (1994), 281-330 Zbl0973.53524MR1267892
- M. Rumin, Sub-Riemannian limit of the differential form spectrum of contact manifolds, Geom. Funct. Anal. 10 (2000), 407-452 Zbl1008.53033MR1771424
- P. Scott, The geometries of -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
- N. Seshadri, Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds, Bull. Soc. Math. France 137 (2009), 63-91 Zbl1176.53078MR2496701
- N. K. Stanton, Spectral invariants of CR manifolds, Michigan Math. J. 36 (1989), 267-288 Zbl0685.58033MR1000530
- N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, (1975), Department of Mathematics, Kyoto University, No. 9. Kinokuniya Book-Store Co. Ltd., Tokyo Zbl0331.53025MR399517
- S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349-379 Zbl0677.53043MR1000553
- M. E. Taylor, Noncommutative microlocal analysis. I, 52, no 313 (1984), Mem. Amer. Math. Soc. Zbl0554.35025MR764508
- S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41 Zbl0379.53016MR520599
- E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, (1962), Reprinted. Cambridge University Press, New York Zbl0105.26901MR178117
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.