Analytic torsions on contact manifolds

Michel Rumin[1]; Neil Seshadri[2]

  • [1] Laboratoire de Mathématiques d’Orsay CNRS et Université Paris Sud 91405 Orsay Cedex France
  • [2] Graduate School of Mathematical Sciences The University of Tokyo 3–8– 1 Komaba, Meguro, Tokyo 150-0044 Japan

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 2, page 727-782
  • ISSN: 0373-0956

Abstract

top
We propose a definition for analytic torsion of the contact complex on contact manifolds. We show it coincides with Ray–Singer torsion on any 3 -dimensional CR Seifert manifold equipped with a unitary representation. In this particular case we compute it and relate it to dynamical properties of the Reeb flow. In fact the whole spectral torsion function we consider may be interpreted on CR Seifert manifolds as a purely dynamical function through Selberg-like trace formulae, that hold also in variable curvature.

How to cite

top

Rumin, Michel, and Seshadri, Neil. "Analytic torsions on contact manifolds." Annales de l’institut Fourier 62.2 (2012): 727-782. <http://eudml.org/doc/251147>.

@article{Rumin2012,
abstract = {We propose a definition for analytic torsion of the contact complex on contact manifolds. We show it coincides with Ray–Singer torsion on any $3$-dimensional CR Seifert manifold equipped with a unitary representation. In this particular case we compute it and relate it to dynamical properties of the Reeb flow. In fact the whole spectral torsion function we consider may be interpreted on CR Seifert manifolds as a purely dynamical function through Selberg-like trace formulae, that hold also in variable curvature.},
affiliation = {Laboratoire de Mathématiques d’Orsay CNRS et Université Paris Sud 91405 Orsay Cedex France; Graduate School of Mathematical Sciences The University of Tokyo 3–8– 1 Komaba, Meguro, Tokyo 150-0044 Japan},
author = {Rumin, Michel, Seshadri, Neil},
journal = {Annales de l’institut Fourier},
keywords = {analytic torsion; contact complex; CR Seifert manifold; trace formula},
language = {eng},
number = {2},
pages = {727-782},
publisher = {Association des Annales de l’institut Fourier},
title = {Analytic torsions on contact manifolds},
url = {http://eudml.org/doc/251147},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Rumin, Michel
AU - Seshadri, Neil
TI - Analytic torsions on contact manifolds
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 727
EP - 782
AB - We propose a definition for analytic torsion of the contact complex on contact manifolds. We show it coincides with Ray–Singer torsion on any $3$-dimensional CR Seifert manifold equipped with a unitary representation. In this particular case we compute it and relate it to dynamical properties of the Reeb flow. In fact the whole spectral torsion function we consider may be interpreted on CR Seifert manifolds as a purely dynamical function through Selberg-like trace formulae, that hold also in variable curvature.
LA - eng
KW - analytic torsion; contact complex; CR Seifert manifold; trace formula
UR - http://eudml.org/doc/251147
ER -

References

top
  1. C. Bär, S. Moroianu, Heat kernel asymptotics for roots of generalized Laplacians, Internat. J. Math. 14 (2003), 397-412 Zbl1079.58020MR1984660
  2. R. J. Baston, M. G. Eastwood, The Penrose transform: Its interaction with representation theory, (1989), The Clarendon Press, Oxford University Press, New York Zbl0726.58004MR1038279
  3. R. Beals, P. Greiner, Calculus on Heisenberg manifolds, 119 (1988), Princeton University Press, Princeton, NJ Zbl0654.58033MR953082
  4. R. Beals, P. C. Greiner, N. K. Stanton, The heat equation and geometry of CR manifolds, Bull. Amer. Math. Soc. (N.S.) 10 (1984), 275-276 Zbl0543.58024MR733694
  5. F. A. Belgun, Normal CR structures on S 3 , Math. Z. 244 (2003), 123-151 Zbl1044.32027MR1981879
  6. O. Biquard, M. Herzlich, Burns-Epstein invariant for ACHE 4-manifolds, Duke Math. J. 126 (2005), 53-100 Zbl1074.53037MR2110628
  7. O. Biquard, M. Herzlich, M. Rumin, Diabatic limit, eta invariants and Cauchy-Riemann manifolds of dimension 3 , Ann. Sci. Ecole Norm. Sup. (4) 40 (2007), 589-631 Zbl1188.32010MR2191527
  8. J.-M. Bismut, The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc. 18 (2005), 379-476 (electronic) Zbl1065.35098MR2137981
  9. J.-M. Bismut, Loop spaces and the hypoelliptic Laplacian, Comm. Pure Appl. Math. 61 (2008), 559-593 Zbl1147.58038MR2383933
  10. J.-M. Bismut, H. Gillet, Soulé C., Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), 49-78 Zbl0651.32017MR929146
  11. J.-M. Bismut, H. Gillet, Soulé C., Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988), 301-351 Zbl0651.32017MR931666
  12. J.-M. Bismut, G. Lebeau, The hypoelliptic Laplacian and Ray-Singer metrics, 167 (2008), Princeton University Press, Princeton, NJ Zbl1156.58001MR2441523
  13. J.-M. Bismut, W. Zhang, An extension of a theorem by Cheeger and Müller. With an appendix by François Laudenbach, (1992), Astérisque Zbl0781.58039MR1185803
  14. T. Branson, Q -curvature and spectral invariants, Rend. Circ. Mat. Palermo (2) Suppl. (2005), 11-55 MR2152355
  15. J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), 259-322 Zbl0412.58026MR528965
  16. D. Fried, Lefschetz formulas for flows, The Lefschetz centennial conference, Part III 58 (1987), 19-69, Amer. Math. Soc., Providence, RI, Mexico City, 1984 Zbl0619.58034MR893856
  17. D. Fried, Counting circles, Dynamical systems (College Park, MD, 1986–87) 1342 (1988), 196-215, Springer, Berlin Zbl0662.58033MR970556
  18. D. Fried, Torsion and closed geodesics on complex hyperbolic manifolds, Invent. Math. 91 (1988), 31-51 Zbl0658.53061MR918235
  19. F. B. Fuller, An index of fixed point type for periodic orbits, Amer. J. Math. 89 (1967), 133-148 Zbl0152.40204MR209600
  20. M. Furuta, B. Steer, Seifert fibred homology 3 -spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992), 38-102 Zbl0769.58009MR1185787
  21. E. Getzler, An analogue of Demailly’s inequality for strictly pseudoconvex CR manifolds., J. Differential Geom. 29 (1989), 231-244 Zbl0714.58053MR982172
  22. P. B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, 11 (1984), Publish or Perish Inc., Wilmington, DE Zbl0565.58035MR783634
  23. P. Julg, G. Kasparov, Operator K -theory for the group SU ( n , 1 ) , J. Reine Angew. Math. 463 (1995), 99-152 Zbl0819.19004MR1332908
  24. C. Kassel, Le résidu non commutatif (d’après M. Wodzicki), , (177-178):Exp. No. 708, 199–229, 1989. Séminaire Bourbaki (Vol. 1988/89) Zbl0701.58054MR1040574
  25. F. F. Knudsen, D. Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), 19-55 Zbl0343.14008MR437541
  26. J. W. Milnor, J. D. Stasheff, Characteristic classes, 76 (1974), Princeton University Press, Princeton, NJ Zbl0298.57008MR440554
  27. H. Moscovici, R. J. Stanton, R -torsion and zeta functions for locally symmetric manifolds, Invent. Math. 105 (1991), 185-216 Zbl0789.58073MR1109626
  28. W. Müller, Analytic torsion and R -torsion of Riemannian manifolds, Adv. Math. 28 (1978), 233-305 Zbl0395.57011MR498252
  29. L. I. Nicolaescu, Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations, Comm. Anal. Geom. 8 (2000), 1027-1096 Zbl1001.58004MR1846125
  30. R. Ponge, Noncommutative residue for Heisenberg manifolds. Applications in CR and contact geometry, J. Funct. Anal. 252 (2007), 399-463 Zbl1127.58024MR2360923
  31. R. S. Ponge, Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, 194, no 906 (2008), Mem. Amer. Math. Soc. Zbl1143.58014MR2417549
  32. D. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funct. Anal. Appl. 214 (1985), 31-34 Zbl0603.32016MR783704
  33. D. B. Ray, I. M. Singer, R -torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145-210 Zbl0239.58014MR295381
  34. C. Rockland, Hypoellipticity on the Heisenberg group–representation-theoretic criteria, Trans. Amer. Math. Soc. 240 (1978), 1-52 Zbl0326.22007MR486314
  35. S. Rosenberg, The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds, 31 (1997), Cambridge University Press, Cambridge Zbl0868.58074MR1462892
  36. M. Rumin, Un complexe de formes différentielles sur les variétés de contact, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 101-404 Zbl0694.57010MR1046521
  37. M. Rumin, Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (1994), 281-330 Zbl0973.53524MR1267892
  38. M. Rumin, Sub-Riemannian limit of the differential form spectrum of contact manifolds, Geom. Funct. Anal. 10 (2000), 407-452 Zbl1008.53033MR1771424
  39. P. Scott, The geometries of 3 -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
  40. N. Seshadri, Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds, Bull. Soc. Math. France 137 (2009), 63-91 Zbl1176.53078MR2496701
  41. N. K. Stanton, Spectral invariants of CR manifolds, Michigan Math. J. 36 (1989), 267-288 Zbl0685.58033MR1000530
  42. N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, (1975), Department of Mathematics, Kyoto University, No. 9. Kinokuniya Book-Store Co. Ltd., Tokyo Zbl0331.53025MR399517
  43. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349-379 Zbl0677.53043MR1000553
  44. M. E. Taylor, Noncommutative microlocal analysis. I, 52, no 313 (1984), Mem. Amer. Math. Soc. Zbl0554.35025MR764508
  45. S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41 Zbl0379.53016MR520599
  46. E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, (1962), Reprinted. Cambridge University Press, New York Zbl0105.26901MR178117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.