Global continuum of positive solutions for discrete p -Laplacian eigenvalue problems

Dingyong Bai; Yuming Chen

Applications of Mathematics (2015)

  • Volume: 60, Issue: 4, page 343-353
  • ISSN: 0862-7940

Abstract

top
We discuss the discrete p -Laplacian eigenvalue problem, Δ ( φ p ( Δ u ( k - 1 ) ) ) + λ a ( k ) g ( u ( k ) ) = 0 , k { 1 , 2 , ... , T } , u ( 0 ) = u ( T + 1 ) = 0 , where T > 1 is a given positive integer and φ p ( x ) : = | x | p - 2 x , p > 1 . First, the existence of an unbounded continuum 𝒞 of positive solutions emanating from ( λ , u ) = ( 0 , 0 ) is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any λ > 0 and all solutions are ordered. Thus the continuum 𝒞 is a monotone continuous curve globally defined for all λ > 0 .

How to cite

top

Bai, Dingyong, and Chen, Yuming. "Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems." Applications of Mathematics 60.4 (2015): 343-353. <http://eudml.org/doc/271572>.

@article{Bai2015,
abstract = {We discuss the discrete $p$-Laplacian eigenvalue problem, \[ \{\left\lbrace \begin\{array\}\{ll\} \Delta (\phi \_p(\Delta u(k-1)))+\lambda a(k)g(u(k))=0,\quad k\in \lbrace 1,2, \ldots , T\rbrace ,\\ u(0)=u(T+1)=0, \end\{array\}\right.\} \] where $T>1$ is a given positive integer and $\phi _p(x):=|x|^\{p-2\}x$, $p > 1$. First, the existence of an unbounded continuum $\mathcal \{C\}$ of positive solutions emanating from $(\lambda , u)=(0,0)$ is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any $\lambda >0$ and all solutions are ordered. Thus the continuum $\mathcal \{C\}$ is a monotone continuous curve globally defined for all $\lambda >0$.},
author = {Bai, Dingyong, Chen, Yuming},
journal = {Applications of Mathematics},
keywords = {discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method; discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method},
language = {eng},
number = {4},
pages = {343-353},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems},
url = {http://eudml.org/doc/271572},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Bai, Dingyong
AU - Chen, Yuming
TI - Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 343
EP - 353
AB - We discuss the discrete $p$-Laplacian eigenvalue problem, \[ {\left\lbrace \begin{array}{ll} \Delta (\phi _p(\Delta u(k-1)))+\lambda a(k)g(u(k))=0,\quad k\in \lbrace 1,2, \ldots , T\rbrace ,\\ u(0)=u(T+1)=0, \end{array}\right.} \] where $T>1$ is a given positive integer and $\phi _p(x):=|x|^{p-2}x$, $p > 1$. First, the existence of an unbounded continuum $\mathcal {C}$ of positive solutions emanating from $(\lambda , u)=(0,0)$ is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any $\lambda >0$ and all solutions are ordered. Thus the continuum $\mathcal {C}$ is a monotone continuous curve globally defined for all $\lambda >0$.
LA - eng
KW - discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method; discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method
UR - http://eudml.org/doc/271572
ER -

References

top
  1. Agarwal, R. P., Perera, K., O'Regan, D., Multiple positive solutions of singular discrete p -Laplacian problems via variational methods, Adv. Difference Equ. 2005 (2005), 93-99. (2005) Zbl1098.39001MR2197124
  2. Bai, D., A global result for discrete φ -Laplacian eigenvalue problems, Adv. Difference Equ. 2013 (2013), Article ID 264, 10 pages. (2013) MR3110766
  3. Bai, D., Xu, X., Existence and multiplicity of difference φ -Laplacian boundary value problems, Adv. Difference Equ. 2013 (2013), Article ID 267, 13 pages. (2013) MR3125053
  4. Bian, L.-H., Sun, H.-R., Zhang, Q.-G., 10.1080/10236198.2010.491825, J. Difference Equ. Appl. 18 (2012), 345-355. (2012) Zbl1247.39004MR2901826DOI10.1080/10236198.2010.491825
  5. Cabada, A., 10.1016/S0898-1221(01)00179-1, Comput. Math. Appl. 42 (2001), 593-601. (2001) Zbl1001.39006MR1838016DOI10.1016/S0898-1221(01)00179-1
  6. Jaroš, J., Kusano, T., A Picone type identity for second-order half-linear differential equations, Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151. (1999) Zbl0926.34023MR1711081
  7. Ji, D., Ge, W., 10.1016/j.na.2007.02.010, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 2638-2646. (2008) Zbl1145.34309MR2397748DOI10.1016/j.na.2007.02.010
  8. Kim, C.-G., Shi, J., Global continuum and multiple positive solutions to a p -Laplacian boundary-value problem, Electron. J. Differ. Equ. (electronic only) 2012 (2012), 12 pages. (2012) Zbl1260.34045MR2946845
  9. Kusano, T., Jaroš, J., Yoshida, N., 10.1016/S0362-546X(00)85023-3, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 40 (2000), 381-395. (2000) Zbl0954.35018MR1768900DOI10.1016/S0362-546X(00)85023-3
  10. Lee, Y.-H., Sim, I., 10.1016/j.na.2006.12.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 1195-1209. (2008) Zbl1138.34010MR2381665DOI10.1016/j.na.2006.12.015
  11. Li, Y., Lu, L., 10.1016/j.aml.2005.10.020, Appl. Math. Lett. 19 (2006), 1019-1023. (2006) Zbl1125.39007MR2246169DOI10.1016/j.aml.2005.10.020
  12. Liu, Y., 10.4134/JKMS.2010.47.1.135, J. Korean Math. Soc. 47 (2010), 135-163. (2010) Zbl1191.39008MR2591031DOI10.4134/JKMS.2010.47.1.135
  13. Řehák, P., 10.1023/A:1013790713905, Czech. Math. J. 51 (2001), 303-321. (2001) Zbl0982.39004MR1844312DOI10.1023/A:1013790713905
  14. Xia, J., Liu, Y., 10.18514/MMN.2012.357, Miskolc Math. Notes 13 (2012), 149-176. (2012) MR2970907DOI10.18514/MMN.2012.357
  15. Yang, Y., Meng, F., 10.1007/s12190-012-0559-7, J. Appl. Math. Comput. 40 (2012), 319-340. (2012) Zbl1295.39006MR2965334DOI10.1007/s12190-012-0559-7
  16. Zeidler, E., Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems, Springer New York (1986). (1986) Zbl0583.47050MR0816732
  17. Zhang, X., Tang, X., 10.1007/s10492-012-0002-2, Appl. Math., Praha 57 (2012), 11-30. (2012) Zbl1249.39009MR2891303DOI10.1007/s10492-012-0002-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.