Global continuum of positive solutions for discrete -Laplacian eigenvalue problems
Applications of Mathematics (2015)
- Volume: 60, Issue: 4, page 343-353
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBai, Dingyong, and Chen, Yuming. "Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems." Applications of Mathematics 60.4 (2015): 343-353. <http://eudml.org/doc/271572>.
@article{Bai2015,
abstract = {We discuss the discrete $p$-Laplacian eigenvalue problem, \[ \{\left\lbrace \begin\{array\}\{ll\} \Delta (\phi \_p(\Delta u(k-1)))+\lambda a(k)g(u(k))=0,\quad k\in \lbrace 1,2, \ldots , T\rbrace ,\\ u(0)=u(T+1)=0, \end\{array\}\right.\} \]
where $T>1$ is a given positive integer and $\phi _p(x):=|x|^\{p-2\}x$, $p > 1$. First, the existence of an unbounded continuum $\mathcal \{C\}$ of positive solutions emanating from $(\lambda , u)=(0,0)$ is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any $\lambda >0$ and all solutions are ordered. Thus the continuum $\mathcal \{C\}$ is a monotone continuous curve globally defined for all $\lambda >0$.},
author = {Bai, Dingyong, Chen, Yuming},
journal = {Applications of Mathematics},
keywords = {discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method; discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method},
language = {eng},
number = {4},
pages = {343-353},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems},
url = {http://eudml.org/doc/271572},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Bai, Dingyong
AU - Chen, Yuming
TI - Global continuum of positive solutions for discrete $p$-Laplacian eigenvalue problems
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 343
EP - 353
AB - We discuss the discrete $p$-Laplacian eigenvalue problem, \[ {\left\lbrace \begin{array}{ll} \Delta (\phi _p(\Delta u(k-1)))+\lambda a(k)g(u(k))=0,\quad k\in \lbrace 1,2, \ldots , T\rbrace ,\\ u(0)=u(T+1)=0, \end{array}\right.} \]
where $T>1$ is a given positive integer and $\phi _p(x):=|x|^{p-2}x$, $p > 1$. First, the existence of an unbounded continuum $\mathcal {C}$ of positive solutions emanating from $(\lambda , u)=(0,0)$ is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any $\lambda >0$ and all solutions are ordered. Thus the continuum $\mathcal {C}$ is a monotone continuous curve globally defined for all $\lambda >0$.
LA - eng
KW - discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method; discrete $p$-Laplacian eigenvalue problem; positive solution; continuum; Picone-type identity; lower and upper solutions method
UR - http://eudml.org/doc/271572
ER -
References
top- Agarwal, R. P., Perera, K., O'Regan, D., Multiple positive solutions of singular discrete -Laplacian problems via variational methods, Adv. Difference Equ. 2005 (2005), 93-99. (2005) Zbl1098.39001MR2197124
- Bai, D., A global result for discrete -Laplacian eigenvalue problems, Adv. Difference Equ. 2013 (2013), Article ID 264, 10 pages. (2013) MR3110766
- Bai, D., Xu, X., Existence and multiplicity of difference -Laplacian boundary value problems, Adv. Difference Equ. 2013 (2013), Article ID 267, 13 pages. (2013) MR3125053
- Bian, L.-H., Sun, H.-R., Zhang, Q.-G., 10.1080/10236198.2010.491825, J. Difference Equ. Appl. 18 (2012), 345-355. (2012) Zbl1247.39004MR2901826DOI10.1080/10236198.2010.491825
- Cabada, A., 10.1016/S0898-1221(01)00179-1, Comput. Math. Appl. 42 (2001), 593-601. (2001) Zbl1001.39006MR1838016DOI10.1016/S0898-1221(01)00179-1
- Jaroš, J., Kusano, T., A Picone type identity for second-order half-linear differential equations, Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151. (1999) Zbl0926.34023MR1711081
- Ji, D., Ge, W., 10.1016/j.na.2007.02.010, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 2638-2646. (2008) Zbl1145.34309MR2397748DOI10.1016/j.na.2007.02.010
- Kim, C.-G., Shi, J., Global continuum and multiple positive solutions to a -Laplacian boundary-value problem, Electron. J. Differ. Equ. (electronic only) 2012 (2012), 12 pages. (2012) Zbl1260.34045MR2946845
- Kusano, T., Jaroš, J., Yoshida, N., 10.1016/S0362-546X(00)85023-3, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 40 (2000), 381-395. (2000) Zbl0954.35018MR1768900DOI10.1016/S0362-546X(00)85023-3
- Lee, Y.-H., Sim, I., 10.1016/j.na.2006.12.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 1195-1209. (2008) Zbl1138.34010MR2381665DOI10.1016/j.na.2006.12.015
- Li, Y., Lu, L., 10.1016/j.aml.2005.10.020, Appl. Math. Lett. 19 (2006), 1019-1023. (2006) Zbl1125.39007MR2246169DOI10.1016/j.aml.2005.10.020
- Liu, Y., 10.4134/JKMS.2010.47.1.135, J. Korean Math. Soc. 47 (2010), 135-163. (2010) Zbl1191.39008MR2591031DOI10.4134/JKMS.2010.47.1.135
- Řehák, P., 10.1023/A:1013790713905, Czech. Math. J. 51 (2001), 303-321. (2001) Zbl0982.39004MR1844312DOI10.1023/A:1013790713905
- Xia, J., Liu, Y., 10.18514/MMN.2012.357, Miskolc Math. Notes 13 (2012), 149-176. (2012) MR2970907DOI10.18514/MMN.2012.357
- Yang, Y., Meng, F., 10.1007/s12190-012-0559-7, J. Appl. Math. Comput. 40 (2012), 319-340. (2012) Zbl1295.39006MR2965334DOI10.1007/s12190-012-0559-7
- Zeidler, E., Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems, Springer New York (1986). (1986) Zbl0583.47050MR0816732
- Zhang, X., Tang, X., 10.1007/s10492-012-0002-2, Appl. Math., Praha 57 (2012), 11-30. (2012) Zbl1249.39009MR2891303DOI10.1007/s10492-012-0002-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.