Existence of solutions for a nonlinear discrete system involving the p -Laplacian

Xingyong Zhang; Xianhua Tang

Applications of Mathematics (2012)

  • Volume: 57, Issue: 1, page 11-30
  • ISSN: 0862-7940

Abstract

top
The existence of solutions for boundary value problems for a nonlinear discrete system involving the p -Laplacian is investigated. The approach is based on critical point theory.

How to cite

top

Zhang, Xingyong, and Tang, Xianhua. "Existence of solutions for a nonlinear discrete system involving the $p$-Laplacian." Applications of Mathematics 57.1 (2012): 11-30. <http://eudml.org/doc/246804>.

@article{Zhang2012,
abstract = {The existence of solutions for boundary value problems for a nonlinear discrete system involving the $p$-Laplacian is investigated. The approach is based on critical point theory.},
author = {Zhang, Xingyong, Tang, Xianhua},
journal = {Applications of Mathematics},
keywords = {critical point theory; boundary value problems; discrete systems; $p$-Laplacian; variational method; discrete -Laplacian; critical point method; variational method; discrete boundary value problem},
language = {eng},
number = {1},
pages = {11-30},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for a nonlinear discrete system involving the $p$-Laplacian},
url = {http://eudml.org/doc/246804},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Zhang, Xingyong
AU - Tang, Xianhua
TI - Existence of solutions for a nonlinear discrete system involving the $p$-Laplacian
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 11
EP - 30
AB - The existence of solutions for boundary value problems for a nonlinear discrete system involving the $p$-Laplacian is investigated. The approach is based on critical point theory.
LA - eng
KW - critical point theory; boundary value problems; discrete systems; $p$-Laplacian; variational method; discrete -Laplacian; critical point method; variational method; discrete boundary value problem
UR - http://eudml.org/doc/246804
ER -

References

top
  1. Bai, D., Xu, Y., 10.1016/j.jmaa.2006.02.091, J. Math. Anal. Appl. 326 (2007), 297-302. (2007) Zbl1113.39018MR2277783DOI10.1016/j.jmaa.2006.02.091
  2. Bonanno, G., Candito, P., 10.1016/j.na.2008.04.021, Nonlinear Anal., Theory Methods Appl. 70 (2009), 3180-3186. (2009) MR2503063DOI10.1016/j.na.2008.04.021
  3. Bonanno, G., Candito, P., 10.1080/00036810902942242, Appl. Anal. 88 (2009), 605-616. (2009) Zbl1176.39004MR2541143DOI10.1080/00036810902942242
  4. Candito, P., Giovannelli, N., 10.1016/j.camwa.2008.01.025, Comput. Math. Appl. 56 (2008), 959-964. (2008) Zbl1155.39301MR2437868DOI10.1016/j.camwa.2008.01.025
  5. Guo, Z. M., Yu, J. S., 10.1007/BF02884022, Sci. China Ser. A 46 (2003), 506-515. (2003) Zbl1215.39001MR2014482DOI10.1007/BF02884022
  6. Guo, Z. M., Yu, J. S., 10.1112/S0024610703004563, J. Lond. Math. Soc., II. Ser. 68 (2003), 419-430. (2003) MR1994691DOI10.1112/S0024610703004563
  7. Kuang, J., Applied Inequalities, Shandong Science and Technology Press Jinan City (2004), Chinese. (2004) MR1305610
  8. Lu, W. D., Variational Methods in Differential Equations, Scientific Publishing House in China (2002). (2002) 
  9. Ma, J., Tang, C. L., 10.1016/S0022-247X(02)00636-4, J. Math. Anal. Appl. 275 (2002), 482-494. (2002) Zbl1024.34036MR1943760DOI10.1016/S0022-247X(02)00636-4
  10. Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag New York (1989). (1989) Zbl0676.58017MR0982267
  11. Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Application to Differential Equations. Reg. Conf. Ser. Math, 65, Am. Math. Soc. Provindence (1986). (1986) MR0845785
  12. Tang, C.-L., Wu, X.-P., 10.1016/S0022-247X(02)00417-1, J. Math. Anal. Appl. 285 (2003), 8-16. (2003) Zbl1054.34075MR2000135DOI10.1016/S0022-247X(02)00417-1
  13. Wu, J. F., Wu, X. P., Existence of nontrivial periodic solutions for a class of superquadratic second-order Hamiltonian systems, J. Southwest Univ. (Natural Science Edition) 30 (2008), 26-31. (2008) MR2131492
  14. Wu, X.-P., Tang, C.-L., 10.1006/jmaa.1999.6408, J. Math. Anal. Appl. 236 (1999), 227-235. (1999) MR1704579DOI10.1006/jmaa.1999.6408
  15. Xue, Y.-F., Tang, C.-L., 10.1016/j.amc.2007.06.015, Appl. Math. Comput. 196 (2008), 494-500. (2008) Zbl1153.39024MR2388705DOI10.1016/j.amc.2007.06.015
  16. Xue, Y.-F., Tang, C.-L., 10.1016/j.na.2006.08.038, Nonlinear Anal., Theory Methods Appl. 67 (2007), 2072-2080. (2007) Zbl1129.39008MR2331858DOI10.1016/j.na.2006.08.038
  17. Zhang, X., Tang, X., 10.2478/s12175-011-0044-z, Math. Slovaca 61 (2011), 769-778. (2011) Zbl1274.39018MR2827213DOI10.2478/s12175-011-0044-z
  18. Zhao, F., Wu, X., 10.1016/j.jmaa.2004.01.041, J. Math. Anal. Appl. 296 (2004), 422-434. (2004) Zbl1050.34062MR2075174DOI10.1016/j.jmaa.2004.01.041
  19. Zhou, Z., Yu, J.-S., Guo, Z.-M., 10.1017/S0308210500003607, Proc. R. Soc. Edinb., Sect. A, Math. 134 (2004), 1013-1022. (2004) Zbl1073.39010MR2099576DOI10.1017/S0308210500003607

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.