Jordan automorphisms of triangular algebras. II

Driss Aiat Hadj Ahmed; Rachid Tribak

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 3, page 265-268
  • ISSN: 0010-2628

Abstract

top
We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism.

How to cite

top

Ahmed, Driss Aiat Hadj, and Tribak, Rachid. "Jordan automorphisms of triangular algebras. II." Commentationes Mathematicae Universitatis Carolinae 56.3 (2015): 265-268. <http://eudml.org/doc/271578>.

@article{Ahmed2015,
abstract = {We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism.},
author = {Ahmed, Driss Aiat Hadj, Tribak, Rachid},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {triangular algebra; Jordan automorphism; automorphism},
language = {eng},
number = {3},
pages = {265-268},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Jordan automorphisms of triangular algebras. II},
url = {http://eudml.org/doc/271578},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Ahmed, Driss Aiat Hadj
AU - Tribak, Rachid
TI - Jordan automorphisms of triangular algebras. II
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 3
SP - 265
EP - 268
AB - We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism.
LA - eng
KW - triangular algebra; Jordan automorphism; automorphism
UR - http://eudml.org/doc/271578
ER -

References

top
  1. Aiat-Hadj A.D., Ben Yakoub L., Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra, Internat. J. Math. Math. Sci. 13 (2005), 2125–2132. Zbl1079.16017MR2177700
  2. Benkovič D., Eremita D., 10.1016/j.jalgebra.2004.06.019, J. Algebra 280 (2004), 797–824. Zbl1076.16032MR2090065DOI10.1016/j.jalgebra.2004.06.019
  3. Benkovič D., Eremita D., 10.1016/j.laa.2012.01.022, Linear Algebra Appl. 436 (2012), 4223–4240. Zbl1247.16040MR2915278DOI10.1016/j.laa.2012.01.022
  4. Herstein I.N., 10.1090/S0002-9947-1956-0076751-6, Trans. Amer. Math. Soc. 81(2) (1956), 331–341. Zbl0073.02202MR0076751DOI10.1090/S0002-9947-1956-0076751-6
  5. Khazal R., Dăscălescu S., Van Wyk L., 10.1155/S0161171203205251, Internat. J. Math. Math. Sci. 9 (2003), 533–538. Zbl1022.16019MR1968340DOI10.1155/S0161171203205251

NotesEmbed ?

top

You must be logged in to post comments.