The search session has expired. Please query the service again.
We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.
Let be a commutative ring, be a generalized matrix algebra over with weakly loyal bimodule and be the center of . Suppose that is an -bilinear mapping and that is a trace of . The aim of this article is to describe the form of satisfying the centralizing condition (and commuting condition ) for all . More precisely, we will revisit the question of when the centralizing trace (and commuting trace) has the so-called proper form from a new perspective. Using the aforementioned...
Let be the triangular algebra consisting of unital algebras and over a commutative ring with identity and be a unital -bimodule. An additive subgroup of is said to be a Lie ideal of if . A non-central square closed Lie ideal of is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on , every generalized Jordan triple higher derivation of into is a generalized higher derivation of into .
We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism.
In this paper we prove that every bijection preserving Lie products from a triangular algebra onto a normal triangular algebra is additive modulo centre. As an application, we described the form of bijections preserving Lie products on nest algebras and block upper triangular matrix algebras.
2000 Mathematics Subject Classification: 15A69, 15A78.In [3] we present the construction of the semi-symmetric algebra [χ](E) of a module E over a commutative ring K with unit, which generalizes the tensor algebra T(E), the symmetric algebra S(E), and the exterior algebra ∧(E), deduce some of its functorial properties, and prove a classification theorem. In the present paper we continue the study of the semi-symmetric algebra and discuss its graded dual, the corresponding canonical bilinear form,...
Currently displaying 1 –
13 of
13