Reticulation of a 0-distributive Lattice
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)
- Volume: 54, Issue: 1, page 121-128
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topPawar, Y. S.. "Reticulation of a 0-distributive Lattice." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.1 (2015): 121-128. <http://eudml.org/doc/271581>.
@article{Pawar2015,
abstract = {A congruence relation $\theta $ on a 0-distributive lattice is defined such that the quotient lattice $L/\theta $ is a distributive lattice and the prime spectrum of $L$ and of $L/\theta $ are homeomorphic. Also it is proved that the minimal prime spectrum (maximal spectrum) of $L$ is homeomorphic with the minimal prime spectrum (maximal spectrum) of $L/\theta $.},
author = {Pawar, Y. S.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {0-distributive lattice; ideal; prime ideal; congruence relation; prime spectrum; minimal prime spectrum; maximal spectrum},
language = {eng},
number = {1},
pages = {121-128},
publisher = {Palacký University Olomouc},
title = {Reticulation of a 0-distributive Lattice},
url = {http://eudml.org/doc/271581},
volume = {54},
year = {2015},
}
TY - JOUR
AU - Pawar, Y. S.
TI - Reticulation of a 0-distributive Lattice
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 1
SP - 121
EP - 128
AB - A congruence relation $\theta $ on a 0-distributive lattice is defined such that the quotient lattice $L/\theta $ is a distributive lattice and the prime spectrum of $L$ and of $L/\theta $ are homeomorphic. Also it is proved that the minimal prime spectrum (maximal spectrum) of $L$ is homeomorphic with the minimal prime spectrum (maximal spectrum) of $L/\theta $.
LA - eng
KW - 0-distributive lattice; ideal; prime ideal; congruence relation; prime spectrum; minimal prime spectrum; maximal spectrum
UR - http://eudml.org/doc/271581
ER -
References
top- Belluce, L. P., 10.4153/CJM-1986-069-0, Can. J. Math. 38, 6 (1986), 1356–1379. (1986) Zbl0625.03009MR0873417DOI10.4153/CJM-1986-069-0
- Belluce, L. P., 10.1080/00927879108824234, Comm. Algebra 19 (1991), 1855–1865. (1991) Zbl0728.16002MR1121110DOI10.1080/00927879108824234
- Balasubramani, P., Stone Topology of The Set of Prime Ideals of a 0-distributive Lattice, Indian J. Pure Appl. Math. 35 (2004), 149–158. (2004) MR2040729
- Dan, C. T., Reticulation in Heyting Algebra, Annals of University of Craiova, Math. Comp. Sci. Ser. 30, 2 (2003), 66–70. (2003) MR2064622
- Muresan, C., The Reticulation of a Residuated Lattice, Bull. Math. Soc. Sci. Math. Roumanie 51 (99), 1 (2008), 47–65. (2008) Zbl1164.06011MR2396283
- Grätzer, G., Lattice Theory: First Concepts and Distributive Lattices, W. H. Freeman, San Francisco, 1971. (1971) MR0321817
- Kelley, J. L., General Topology, Van Nostrand, New York, 1969. (1969) MR0070144
- Leustean, L., 10.2478/BF02475217, Central European Journal of Mathematics 1, 3 (2003), 382–397. (2003) Zbl1039.03052MR1992899DOI10.2478/BF02475217
- Pawar, Y. S., 0-1 distributive lattices, Indian J. Pure Appl. Math. 24 (1993), 173–179. (1993) Zbl0765.06015MR1210389
- Simmons, H., 10.1016/0021-8693(80)90118-0, J. Algebra 66 (1980), 169–192. (1980) Zbl0462.13002MR0591251DOI10.1016/0021-8693(80)90118-0
- Varlet, J., A generalization of the notion of pseudo-complementedness, Bull. Soc. Liege 37 (1968), 149–158. (1968) Zbl0162.03501MR0228390
- Varlet, J., On The Characterizations of Stone Lattices, Acta Sci. Math. (Szeged) 27 (1966), 81–84. (1966) MR0194370
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.