On the linear problem arising from motion of a fluid around a moving rigid body

Šárka Matušů-Nečasová; Jörg Wolf

Mathematica Bohemica (2015)

  • Volume: 140, Issue: 2, page 241-259
  • ISSN: 0862-7959

Abstract

top
We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence of a global pressure gradient in L 2 .

How to cite

top

Matušů-Nečasová, Šárka, and Wolf, Jörg. "On the linear problem arising from motion of a fluid around a moving rigid body." Mathematica Bohemica 140.2 (2015): 241-259. <http://eudml.org/doc/271583>.

@article{Matušů2015,
abstract = {We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence of a global pressure gradient in $L^2$.},
author = {Matušů-Nečasová, Šárka, Wolf, Jörg},
journal = {Mathematica Bohemica},
keywords = {incompressible fluid; rotating rigid body; strong solution},
language = {eng},
number = {2},
pages = {241-259},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the linear problem arising from motion of a fluid around a moving rigid body},
url = {http://eudml.org/doc/271583},
volume = {140},
year = {2015},
}

TY - JOUR
AU - Matušů-Nečasová, Šárka
AU - Wolf, Jörg
TI - On the linear problem arising from motion of a fluid around a moving rigid body
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 2
SP - 241
EP - 259
AB - We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence of a global pressure gradient in $L^2$.
LA - eng
KW - incompressible fluid; rotating rigid body; strong solution
UR - http://eudml.org/doc/271583
ER -

References

top
  1. Borchers, W., Zur Stabilität und Faktorisienrungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten, Habilitationsschrift University of Paderborn (1992), German. (1992) 
  2. Chen, Z.-M., Miyakawa, T., Decay properties of weak solutions to a perturbed Navier-Stokes system in n , Adv. Math. Sci. Appl. 7 (1997), 741-770. (1997) MR1476275
  3. Cumsille, P., Takahashi, T., 10.1007/s10587-008-0063-2, Czech. Math. J. 58 (2008), 961-992. (2008) Zbl1174.35092MR2471160DOI10.1007/s10587-008-0063-2
  4. Cumsille, P., Tucsnak, M., 10.1002/mma.702, Math. Methods Appl. Sci. 29 (2006), 595-623. (2006) MR2205973DOI10.1002/mma.702
  5. Dintelmann, E., Geissert, M., Hieber, M., 10.1090/S0002-9947-08-04684-9, Trans. Am. Math. Soc. 361 (2009), 653-669. (2009) Zbl1156.76016MR2452819DOI10.1090/S0002-9947-08-04684-9
  6. Galdi, G. P., On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics 1 Elsevier Amsterdam (2002), 653-791 S. Friedlander et al. (2002) Zbl1230.76016MR1942470
  7. Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations I. Linearized Steady Problems, Springer Tracts in Natural Philosophy 38 Springer, New York (1994). (1994) MR1284205
  8. Galdi, G. P., Silvestre, A. L., 10.1007/s00205-004-0348-z, Arch. Ration. Mech. Anal. 176 (2005), 331-350. (2005) Zbl1081.35076MR2185661DOI10.1007/s00205-004-0348-z
  9. Galdi, G. P., Silvestre, A. L., 10.1007/978-1-4615-0777-2_8, Nonlinear Problems in Mathematical Physics and Related Topics I. Int. Math. Ser. (N. Y.) 1 Kluwer Academic/Plenum Publishers, New York (2002), 121-144 M. S. Birman et al. (2002) Zbl1046.35084MR1970608DOI10.1007/978-1-4615-0777-2_8
  10. Geissert, M., Heck, H., Hieber, M., L p -theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math. 596 (2006), 45-62. (2006) Zbl1102.76015MR2254804
  11. Hishida, T., 10.1007/s002050050190, Arch. Ration. Mech. Anal. 150 (1999), 307-348. (1999) Zbl0949.35106MR1741259DOI10.1007/s002050050190
  12. Hishida, T., Shibata, Y., 10.1007/s00205-008-0130-8, Arch. Ration. Mech. Anal. 193 (2009), 339-421. (2009) Zbl1169.76015MR2525121DOI10.1007/s00205-008-0130-8
  13. Inoue, A., Wakimoto, M., On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 303-319. (1977) Zbl0381.35066MR0481649
  14. Ladyzhenskaya, O. A., An initial-boundary value problem for the Navier-Stokes equations in domains with boundary changing in time, Semin. Math., V. A. Steklov Math. Inst., Leningrad 11 (1968), 35-46 translation from Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. 11 (1968), 97-128 Russian. (1968) MR0416222
  15. Neustupa, J., 10.1002/mma.1059, Math. Methods Appl. Sci. 32 (2009), 653-683. (2009) Zbl1160.35494MR2504002DOI10.1002/mma.1059
  16. Neustupa, J., Penel, P., A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall, Advances in Mathematical Fluid Mechanics Springer, Berlin (2010), 385-407 R. Rannacher et al. (2010) MR2665044
  17. Neustupa, J., Penel, P., A weak solution to the Navier-Stokes system with Navier's boundary condition in a time varying domain, Accepted to ``Recent Developments of Mathematical Fluid Mechanics'', Series: Advances in Math. Fluid Mech. Birkhäuser G. P. Galdi, J. G. Heywood, R. Rannacher. 
  18. Serre, D., Free fall of a rigid body in an incompressible viscous fluid. Existence, Japan J. Appl. Math. 4 French (1987), 99-110. (1987) MR0899206
  19. Takahashi, T., 10.1016/S1631-073X(03)00081-5, C. R., Math., Acad. Sci. Paris 336 (2003), 453-458. (2003) Zbl1044.35062MR1979363DOI10.1016/S1631-073X(03)00081-5
  20. Takahashi, T., Tucsnak, M., 10.1007/s00021-003-0083-4, J. Math. Fluid Mech. 6 (2004), 53-77. (2004) Zbl1054.35061MR2027754DOI10.1007/s00021-003-0083-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.