On the linear problem arising from motion of a fluid around a moving rigid body
Šárka Matušů-Nečasová; Jörg Wolf
Mathematica Bohemica (2015)
- Volume: 140, Issue: 2, page 241-259
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMatušů-Nečasová, Šárka, and Wolf, Jörg. "On the linear problem arising from motion of a fluid around a moving rigid body." Mathematica Bohemica 140.2 (2015): 241-259. <http://eudml.org/doc/271583>.
@article{Matušů2015,
abstract = {We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence of a global pressure gradient in $L^2$.},
author = {Matušů-Nečasová, Šárka, Wolf, Jörg},
journal = {Mathematica Bohemica},
keywords = {incompressible fluid; rotating rigid body; strong solution},
language = {eng},
number = {2},
pages = {241-259},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the linear problem arising from motion of a fluid around a moving rigid body},
url = {http://eudml.org/doc/271583},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Matušů-Nečasová, Šárka
AU - Wolf, Jörg
TI - On the linear problem arising from motion of a fluid around a moving rigid body
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 2
SP - 241
EP - 259
AB - We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence of a global pressure gradient in $L^2$.
LA - eng
KW - incompressible fluid; rotating rigid body; strong solution
UR - http://eudml.org/doc/271583
ER -
References
top- Borchers, W., Zur Stabilität und Faktorisienrungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten, Habilitationsschrift University of Paderborn (1992), German. (1992)
- Chen, Z.-M., Miyakawa, T., Decay properties of weak solutions to a perturbed Navier-Stokes system in , Adv. Math. Sci. Appl. 7 (1997), 741-770. (1997) MR1476275
- Cumsille, P., Takahashi, T., 10.1007/s10587-008-0063-2, Czech. Math. J. 58 (2008), 961-992. (2008) Zbl1174.35092MR2471160DOI10.1007/s10587-008-0063-2
- Cumsille, P., Tucsnak, M., 10.1002/mma.702, Math. Methods Appl. Sci. 29 (2006), 595-623. (2006) MR2205973DOI10.1002/mma.702
- Dintelmann, E., Geissert, M., Hieber, M., 10.1090/S0002-9947-08-04684-9, Trans. Am. Math. Soc. 361 (2009), 653-669. (2009) Zbl1156.76016MR2452819DOI10.1090/S0002-9947-08-04684-9
- Galdi, G. P., On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics 1 Elsevier Amsterdam (2002), 653-791 S. Friedlander et al. (2002) Zbl1230.76016MR1942470
- Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations I. Linearized Steady Problems, Springer Tracts in Natural Philosophy 38 Springer, New York (1994). (1994) MR1284205
- Galdi, G. P., Silvestre, A. L., 10.1007/s00205-004-0348-z, Arch. Ration. Mech. Anal. 176 (2005), 331-350. (2005) Zbl1081.35076MR2185661DOI10.1007/s00205-004-0348-z
- Galdi, G. P., Silvestre, A. L., 10.1007/978-1-4615-0777-2_8, Nonlinear Problems in Mathematical Physics and Related Topics I. Int. Math. Ser. (N. Y.) 1 Kluwer Academic/Plenum Publishers, New York (2002), 121-144 M. S. Birman et al. (2002) Zbl1046.35084MR1970608DOI10.1007/978-1-4615-0777-2_8
- Geissert, M., Heck, H., Hieber, M., -theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math. 596 (2006), 45-62. (2006) Zbl1102.76015MR2254804
- Hishida, T., 10.1007/s002050050190, Arch. Ration. Mech. Anal. 150 (1999), 307-348. (1999) Zbl0949.35106MR1741259DOI10.1007/s002050050190
- Hishida, T., Shibata, Y., 10.1007/s00205-008-0130-8, Arch. Ration. Mech. Anal. 193 (2009), 339-421. (2009) Zbl1169.76015MR2525121DOI10.1007/s00205-008-0130-8
- Inoue, A., Wakimoto, M., On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 303-319. (1977) Zbl0381.35066MR0481649
- Ladyzhenskaya, O. A., An initial-boundary value problem for the Navier-Stokes equations in domains with boundary changing in time, Semin. Math., V. A. Steklov Math. Inst., Leningrad 11 (1968), 35-46 translation from Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. 11 (1968), 97-128 Russian. (1968) MR0416222
- Neustupa, J., 10.1002/mma.1059, Math. Methods Appl. Sci. 32 (2009), 653-683. (2009) Zbl1160.35494MR2504002DOI10.1002/mma.1059
- Neustupa, J., Penel, P., A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall, Advances in Mathematical Fluid Mechanics Springer, Berlin (2010), 385-407 R. Rannacher et al. (2010) MR2665044
- Neustupa, J., Penel, P., A weak solution to the Navier-Stokes system with Navier's boundary condition in a time varying domain, Accepted to ``Recent Developments of Mathematical Fluid Mechanics'', Series: Advances in Math. Fluid Mech. Birkhäuser G. P. Galdi, J. G. Heywood, R. Rannacher.
- Serre, D., Free fall of a rigid body in an incompressible viscous fluid. Existence, Japan J. Appl. Math. 4 French (1987), 99-110. (1987) MR0899206
- Takahashi, T., 10.1016/S1631-073X(03)00081-5, C. R., Math., Acad. Sci. Paris 336 (2003), 453-458. (2003) Zbl1044.35062MR1979363DOI10.1016/S1631-073X(03)00081-5
- Takahashi, T., Tucsnak, M., 10.1007/s00021-003-0083-4, J. Math. Fluid Mech. 6 (2004), 53-77. (2004) Zbl1054.35061MR2027754DOI10.1007/s00021-003-0083-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.