Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
Patricio Cumsille; Takéo Takahashi
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 961-992
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCumsille, Patricio, and Takahashi, Takéo. "Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid." Czechoslovak Mathematical Journal 58.4 (2008): 961-992. <http://eudml.org/doc/37880>.
@article{Cumsille2008,
abstract = {In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space $\mathbb \{R\}^d$, $d=2$ or $3$. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary value problem. We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for $d=2$ or $3$. Moreover, we prove that the solution is global in time for $d=2$ and also for $d=3$ if the data are small enough.},
author = {Cumsille, Patricio, Takahashi, Takéo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Navier-Stokes equations; incompressible fluid; rigid bodies; Navier-Stokes equations; incompressible fluid; rigid bodies},
language = {eng},
number = {4},
pages = {961-992},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid},
url = {http://eudml.org/doc/37880},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Cumsille, Patricio
AU - Takahashi, Takéo
TI - Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 961
EP - 992
AB - In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space $\mathbb {R}^d$, $d=2$ or $3$. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary value problem. We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for $d=2$ or $3$. Moreover, we prove that the solution is global in time for $d=2$ and also for $d=3$ if the data are small enough.
LA - eng
KW - Navier-Stokes equations; incompressible fluid; rigid bodies; Navier-Stokes equations; incompressible fluid; rigid bodies
UR - http://eudml.org/doc/37880
ER -
References
top- Arnold, V. I., Ordinary Differential Equations, Springer Berlin (1992); translated from the third Russian edition. Zbl0858.34001MR1162307
- Conca, C., Martín, J. San, Tucsnak, M., Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Commun. Partial Differ. Equations 25 (2000), 1019-1042. (2000) MR1759801
- Cumsille, P., Tucsnak, M., 10.1002/mma.702, Math. Methods Appl. Sci. 29 (2006), 595-623. (2006) MR2205973DOI10.1002/mma.702
- Desjardins, B., Esteban, M. J., 10.1007/s002050050136, Arch. Ration. Mech. Anal. 146 (1999), 59-71. (1999) Zbl0943.35063MR1682663DOI10.1007/s002050050136
- Farwiq, R., Sohr, H., 10.1002/mma.1670170405, Math. Methods Appl. Sci. 17 (1994), 269-291. (1994) MR1265181DOI10.1002/mma.1670170405
- Feireisl, E., 10.1023/A:1023245704966, Appl. Math. 47 (2002), 463-484. (2002) Zbl1090.35137MR1948192DOI10.1023/A:1023245704966
- Feireisl, E., 10.1007/s00205-002-0242-5, Arch. Ration. Mech. Anal. 167 (2003), 281-308. (2003) Zbl1090.76061MR1981859DOI10.1007/s00205-002-0242-5
- Galdi, G. P., On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, Vol. I Elsevier Amsterdam (2002), 653-791. (2002) MR1942470
- Galdi, G. P., Silvestre, A. L., 10.1007/978-1-4615-0777-2_8, Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. Vol. 1 Kluwer/Plenum New York (2002), 121-144. (2002) Zbl1046.35084MR1970608DOI10.1007/978-1-4615-0777-2_8
- Galdi, G. P., Silvestre, A. L., 10.1007/s00205-004-0348-z, Arch. Ration. Mech. Anal. 176 (2005), 331-350. (2005) Zbl1081.35076MR2185661DOI10.1007/s00205-004-0348-z
- Maday, C. Grandmont,Y., 10.1051/m2an:2000159, M2AN, Math. Model. Numer. Anal. 34 (2000), 609-636. (2000) Zbl0969.76017MR1763528DOI10.1051/m2an:2000159
- Hartman, P., Ordinary Differential Equations, Birkhäuser Boston (1982). (1982) Zbl0476.34002MR0658490
- Heywood, J. G., 10.1512/iumj.1980.29.29048, Indiana Univ. Math. J. 29 (1980), 639-681. (1980) Zbl0494.35077MR0589434DOI10.1512/iumj.1980.29.29048
- Hishida, T., 10.1007/s002050050190, Arch. Rational Mech. Anal. 150 (1999), 307-348. (1999) Zbl0949.35106MR1741259DOI10.1007/s002050050190
- Hoffmann, K.-H., Starovoitov, V. N., On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl. 9 (1999), 633-648. (1999) Zbl0966.76016MR1725677
- Inoue, A., Wakimoto, M., On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 303-319. (1977) Zbl0381.35066MR0481649
- Lions, J.-L., Magenes, E., Non-homogeneous boundary value problems and applications. Vol. I, Springer Berlin-Heidelberg-New York (1972). (1972) Zbl0223.35039MR0350177
- Martín, J. A. San, Starovoitov, V., Tucsnak, M., 10.1007/s002050100172, Arch. Ration. Mech. Anal. 161 (2002), 113-147. (2002) MR1870954DOI10.1007/s002050100172
- Serre, D., 10.1007/BF03167757, Japan J. Appl. Math. 4 (1987), 99-110 French. (1987) Zbl0655.76022MR0899206DOI10.1007/BF03167757
- Silvestre, A. L., 10.1016/S0022-247X(02)00289-5, J. Math. Anal. Appl. 274 (2002), 203-227. (2002) Zbl1121.76321MR1936694DOI10.1016/S0022-247X(02)00289-5
- Takahashi, T., Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differ. Equ. 8 (2003), 1499-1532. (2003) Zbl1101.35356MR2029294
- Takahashi, T., Tucsnak, M., 10.1007/s00021-003-0083-4, J. Math. Fluid Mech. 6 (2004), 53-77. (2004) Zbl1054.35061MR2027754DOI10.1007/s00021-003-0083-4
- Temam, R., Navier-Stokes equations. Theory and numerical analysis, 3rd ed., with an appendix by F. Thomasset, North-Holland Amsterdam-New York-Oxford (1984). (1984) MR0769654
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.