Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid

Patricio Cumsille; Takéo Takahashi

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 961-992
  • ISSN: 0011-4642

Abstract

top
In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space d , d = 2 or 3 . The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary value problem. We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for d = 2 or 3 . Moreover, we prove that the solution is global in time for d = 2 and also for d = 3 if the data are small enough.

How to cite

top

Cumsille, Patricio, and Takahashi, Takéo. "Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid." Czechoslovak Mathematical Journal 58.4 (2008): 961-992. <http://eudml.org/doc/37880>.

@article{Cumsille2008,
abstract = {In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space $\mathbb \{R\}^d$, $d=2$ or $3$. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary value problem. We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for $d=2$ or $3$. Moreover, we prove that the solution is global in time for $d=2$ and also for $d=3$ if the data are small enough.},
author = {Cumsille, Patricio, Takahashi, Takéo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Navier-Stokes equations; incompressible fluid; rigid bodies; Navier-Stokes equations; incompressible fluid; rigid bodies},
language = {eng},
number = {4},
pages = {961-992},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid},
url = {http://eudml.org/doc/37880},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Cumsille, Patricio
AU - Takahashi, Takéo
TI - Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 961
EP - 992
AB - In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space $\mathbb {R}^d$, $d=2$ or $3$. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary value problem. We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for $d=2$ or $3$. Moreover, we prove that the solution is global in time for $d=2$ and also for $d=3$ if the data are small enough.
LA - eng
KW - Navier-Stokes equations; incompressible fluid; rigid bodies; Navier-Stokes equations; incompressible fluid; rigid bodies
UR - http://eudml.org/doc/37880
ER -

References

top
  1. Arnold, V. I., Ordinary Differential Equations, Springer Berlin (1992); translated from the third Russian edition. Zbl0858.34001MR1162307
  2. Conca, C., Martín, J. San, Tucsnak, M., Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Commun. Partial Differ. Equations 25 (2000), 1019-1042. (2000) MR1759801
  3. Cumsille, P., Tucsnak, M., 10.1002/mma.702, Math. Methods Appl. Sci. 29 (2006), 595-623. (2006) MR2205973DOI10.1002/mma.702
  4. Desjardins, B., Esteban, M. J., 10.1007/s002050050136, Arch. Ration. Mech. Anal. 146 (1999), 59-71. (1999) Zbl0943.35063MR1682663DOI10.1007/s002050050136
  5. Farwiq, R., Sohr, H., 10.1002/mma.1670170405, Math. Methods Appl. Sci. 17 (1994), 269-291. (1994) MR1265181DOI10.1002/mma.1670170405
  6. Feireisl, E., 10.1023/A:1023245704966, Appl. Math. 47 (2002), 463-484. (2002) Zbl1090.35137MR1948192DOI10.1023/A:1023245704966
  7. Feireisl, E., 10.1007/s00205-002-0242-5, Arch. Ration. Mech. Anal. 167 (2003), 281-308. (2003) Zbl1090.76061MR1981859DOI10.1007/s00205-002-0242-5
  8. Galdi, G. P., On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, Vol. I Elsevier Amsterdam (2002), 653-791. (2002) MR1942470
  9. Galdi, G. P., Silvestre, A. L., 10.1007/978-1-4615-0777-2_8, Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. Vol. 1 Kluwer/Plenum New York (2002), 121-144. (2002) Zbl1046.35084MR1970608DOI10.1007/978-1-4615-0777-2_8
  10. Galdi, G. P., Silvestre, A. L., 10.1007/s00205-004-0348-z, Arch. Ration. Mech. Anal. 176 (2005), 331-350. (2005) Zbl1081.35076MR2185661DOI10.1007/s00205-004-0348-z
  11. Maday, C. Grandmont,Y., 10.1051/m2an:2000159, M2AN, Math. Model. Numer. Anal. 34 (2000), 609-636. (2000) Zbl0969.76017MR1763528DOI10.1051/m2an:2000159
  12. Hartman, P., Ordinary Differential Equations, Birkhäuser Boston (1982). (1982) Zbl0476.34002MR0658490
  13. Heywood, J. G., 10.1512/iumj.1980.29.29048, Indiana Univ. Math. J. 29 (1980), 639-681. (1980) Zbl0494.35077MR0589434DOI10.1512/iumj.1980.29.29048
  14. Hishida, T., 10.1007/s002050050190, Arch. Rational Mech. Anal. 150 (1999), 307-348. (1999) Zbl0949.35106MR1741259DOI10.1007/s002050050190
  15. Hoffmann, K.-H., Starovoitov, V. N., On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl. 9 (1999), 633-648. (1999) Zbl0966.76016MR1725677
  16. Inoue, A., Wakimoto, M., On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 303-319. (1977) Zbl0381.35066MR0481649
  17. Lions, J.-L., Magenes, E., Non-homogeneous boundary value problems and applications. Vol. I, Springer Berlin-Heidelberg-New York (1972). (1972) Zbl0223.35039MR0350177
  18. Martín, J. A. San, Starovoitov, V., Tucsnak, M., 10.1007/s002050100172, Arch. Ration. Mech. Anal. 161 (2002), 113-147. (2002) MR1870954DOI10.1007/s002050100172
  19. Serre, D., 10.1007/BF03167757, Japan J. Appl. Math. 4 (1987), 99-110 French. (1987) Zbl0655.76022MR0899206DOI10.1007/BF03167757
  20. Silvestre, A. L., 10.1016/S0022-247X(02)00289-5, J. Math. Anal. Appl. 274 (2002), 203-227. (2002) Zbl1121.76321MR1936694DOI10.1016/S0022-247X(02)00289-5
  21. Takahashi, T., Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differ. Equ. 8 (2003), 1499-1532. (2003) Zbl1101.35356MR2029294
  22. Takahashi, T., Tucsnak, M., 10.1007/s00021-003-0083-4, J. Math. Fluid Mech. 6 (2004), 53-77. (2004) Zbl1054.35061MR2027754DOI10.1007/s00021-003-0083-4
  23. Temam, R., Navier-Stokes equations. Theory and numerical analysis, 3rd ed., with an appendix by F. Thomasset, North-Holland Amsterdam-New York-Oxford (1984). (1984) MR0769654

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.