Second order quasilinear functional evolution equations
Mathematica Bohemica (2015)
- Volume: 140, Issue: 2, page 139-152
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSimon, László. "Second order quasilinear functional evolution equations." Mathematica Bohemica 140.2 (2015): 139-152. <http://eudml.org/doc/271584>.
@article{Simon2015,
abstract = {We consider second order quasilinear evolution equations where also the main part contains functional dependence on the unknown function. First, existence of solutions in $(0,T)$ is proved and examples satisfying the assumptions of the existence theorem are formulated. Then a uniqueness theorem is proved. Finally, existence and some qualitative properties of the solutions in $(0,\infty )$ (boundedness and stabilization as $t\rightarrow \infty $) are shown.},
author = {Simon, László},
journal = {Mathematica Bohemica},
keywords = {functional evolution equation; second order quasilinear equation; monotone operator},
language = {eng},
number = {2},
pages = {139-152},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Second order quasilinear functional evolution equations},
url = {http://eudml.org/doc/271584},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Simon, László
TI - Second order quasilinear functional evolution equations
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 2
SP - 139
EP - 152
AB - We consider second order quasilinear evolution equations where also the main part contains functional dependence on the unknown function. First, existence of solutions in $(0,T)$ is proved and examples satisfying the assumptions of the existence theorem are formulated. Then a uniqueness theorem is proved. Finally, existence and some qualitative properties of the solutions in $(0,\infty )$ (boundedness and stabilization as $t\rightarrow \infty $) are shown.
LA - eng
KW - functional evolution equation; second order quasilinear equation; monotone operator
UR - http://eudml.org/doc/271584
ER -
References
top- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65. A Series of Monographs and Textbooks Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Berkovits, J., Mustonen, V., Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Appl., VII. Ser. 12 (1992), 597-621. (1992) Zbl0806.47055MR1205967
- Czernous, W., Global solutions of semilinear first order partial functional differential equations with mixed conditions, Funct. Differ. Equ. 18 (2011), 135-154. (2011) Zbl1232.35184MR2894319
- Gajewski, H., Gröger, K., Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien II. Abteilung 38 Akademie, Berlin German (1974). (1974) MR0636412
- Giorgi, C., Rivera, J. E. Muñoz, Pata, V., 10.1006/jmaa.2001.7437, J. Math. Anal. Appl. 260 (2001), 83-99. (2001) MR1843969DOI10.1006/jmaa.2001.7437
- Hale, J., 10.1007/978-1-4612-9892-2_3, Applied Mathematical Sciences 3 Springer, New York (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2_3
- Hartung, F., Turi, J., Stability in a class of functional-differential equations with state-dependent delays, Qualitative Problems for Differential Equations and Control Theory World Scientific Singapore (1995), 15-31 C. Corduneanu. (1995) Zbl0840.34083MR1372735
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Études mathématiques Dunod; Gauthier-Villars, Paris French (1969). (1969) Zbl0189.40603MR0259693
- Simon, L., Nonlinear functional parabolic equations, Integral Methods in Science and Engineering: Computational Methods 2. Selected papers based on the presentations at the 10th International Conference on Integral Methods in Science and Engineering, Santander, Spain, 2008 Birkhäuser Boston (2010), 321-326 C. Constanda et al. (2010) Zbl1263.35214MR2663173
- Simon, L., On nonlinear functional parabolic equations with state-dependent delays of Volterra type, Int. J. Qual. Theory Differ. Equ. Appl. 4 (2010), 88-103. (2010) Zbl1263.35214MR2663173
- Simon, L., Application of monotone type operators to parabolic and functional parabolic {PDE}'s, Handbook of Differential Equations: Evolutionary Equations IV Elsevier/North-Holland, Amsterdam (2008), 267-321 C. M. Dafermos et al. (2008) Zbl1291.35006MR2508168
- Simon, L., 10.1002/1522-2616(200009)217:1<175::AID-MANA175>3.0.CO;2-N, Math. Nachr. 217 (2000), 175-186. (2000) MR1780777DOI10.1002/1522-2616(200009)217:1<175::AID-MANA175>3.0.CO;2-N
- Simon, L., Jäger, W., On non-uniformly parabolic functional differential equations, Stud. Sci. Math. Hung. 45 (2008), 285-300. (2008) Zbl1174.35054MR2417974
- Wu, J., 10.1007/978-1-4612-4050-1, Applied Mathematical Sciences 119 Springer, New York (1996). (1996) Zbl0870.35116DOI10.1007/978-1-4612-4050-1
- Zeidler, E., Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators, Springer New York (1990). (1990) Zbl0684.47028MR1033497
- Zeidler, E., Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators, Springer New York (1990). (1990) Zbl0684.47029MR1033498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.