Displaying similar documents to “Second order quasilinear functional evolution equations”

Solutions for the p-order Feigenbaum’s functional equation h ( g ( x ) ) = g p ( h ( x ) )

Min Zhang, Jianguo Si (2014)

Annales Polonici Mathematici

Similarity:

This work deals with Feigenbaum’s functional equation ⎧ h ( g ( x ) ) = g p ( h ( x ) ) , ⎨ ⎩ g(0) = 1, -1 ≤ g(x) ≤ 1, x∈[-1,1] where p ≥ 2 is an integer, g p is the p-fold iteration of g, and h is a strictly monotone odd continuous function on [-1,1] with h(0) = 0 and |h(x)| < |x| (x ∈ [-1,1], x ≠ 0). Using a constructive method, we discuss the existence of continuous unimodal even solutions of the above equation.

On Probability Distribution Solutions of a Functional Equation

Janusz Morawiec, Ludwig Reich (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let 0 < β < α < 1 and let p ∈ (0,1). We consider the functional equation φ(x) = pφ (x-β)/(1-β) + (1-p)φ(minx/α, (x(α-β)+β(1-α))/α(1-β)) and its solutions in two classes of functions, namely ℐ = φ: ℝ → ℝ|φ is increasing, φ | ( - , 0 ] = 0 , φ | [ 1 , ) = 1 , = φ: ℝ → ℝ|φ is continuous, φ | ( - , 0 ] = 0 , φ | [ 1 , ) = 1 . We prove that the above equation has at most one solution in and that for some parameters α,β and p such a solution exists, and for some it does not. We also determine all solutions of the equation in ℐ and we show the...

Method of averaging for the system of functional-differential inclusions

Teresa Janiak, Elżbieta Łuczak-Kumorek (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The basic idea of this paper is to give the existence theorem and the method of averaging for the system of functional-differential inclusions of the form ⎧ ( t ) F ( t , x t , y t ) (0) ⎨ ⎩ ( t ) G ( t , x t , y t ) (1)

Cauchy-like functional equation based on a class of uninorms

Feng Qin (2015)

Kybernetika

Similarity:

Commuting is an important property in any two-step information merging procedure where the results should not depend on the order in which the single steps are performed. In the case of bisymmetric aggregation operators with the neutral elements, Saminger, Mesiar and Dubois, already reduced characterization of commuting n -ary operators to resolving the unary distributive functional equations. And then the full characterizations of these equations are obtained under the assumption that...

A bifurcation theory for some nonlinear elliptic equations

Biagio Ricceri (2003)

Colloquium Mathematicae

Similarity:

We deal with the problem ⎧ -Δu = f(x,u) + λg(x,u), in Ω, ⎨ ( P λ ) ⎩ u Ω = 0 where Ω ⊂ ℝⁿ is a bounded domain, λ ∈ ℝ, and f,g: Ω×ℝ → ℝ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists λ* > 0 such that, for each λ ∈ (0,λ*), problem ( P λ ) admits a non-zero, non-negative strong solution u λ p 2 W 2 , p ( Ω ) such that l i m λ 0 | | u λ | | W 2 , p ( Ω ) = 0 for all p ≥ 2. Moreover, the function λ I λ ( u λ ) is negative and decreasing in ]0,λ*[, where I λ is the energy functional related to ( P λ ). ...

Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems

Tayeb Benhamoud, Elmehdi Zaouche, Mahmoud Bousselsal (2024)

Mathematica Bohemica

Similarity:

This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation u t - M ( Ω φ u d x ) div ( A ( x , t , u ) u ) = g ( x , t , u ) in Ω × ( 0 , T ) , where Ω is a bounded domain of n ( n 1 ) , T > 0 is a positive number, A ( x , t , u ) is an n × n matrix of variable coefficients depending on u and M : , φ : Ω , g : Ω × ( 0 , T ) × are given functions. We consider two different assumptions on g . The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if A ( x , t , u ) = a ( x , t ) depends only on...

On the Schröder equation

M. Kuczma

Similarity:

CONTENTSPART IIntroduction............................................................................................... 31. General solution.................................................................................. 42. Preliminaries and notation................................................................ 53. C p solutions in *................................................ 74. Change of variables..............................................................................

The existence of Carathéodory solutions of hyperbolic functional differential equations

Adrian Karpowicz (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We consider the following Darboux problem for the functional differential equation ² u / x y ( x , y ) = f ( x , y , u ( x , y ) , u / x ( x , y ) , u / y ( x , y ) ) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b] 0 , a ] × ( 0 , b ] , where the function u ( x , y ) : [ - a , 0 ] × [ - b , 0 ] k is defined by u ( x , y ) ( s , t ) = u ( s + x , t + y ) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.