Newton transformations on null hypersurfaces

Cyriaque Atindogbé and Hans Tetsing Fotsing

Communications in Mathematics (2015)

  • Volume: 23, Issue: 1, page 57-83
  • ISSN: 1804-1388

Abstract

top
Any rigged null hypersurface is provided with two shape operators: with respect to the rigging and the rigged vector fields respectively. The present paper deals with the Newton transformations built on both of them and establishes related curvature properties. The laters are used to derive necessary and sufficient conditions for higher-order umbilicity and maximality we introduced in passing, and develop general Minkowski-type formulas for the null hypersurface, supported by some physical models in perfect-fluid space-times.

How to cite

top

Fotsing, Cyriaque Atindogbé and Hans Tetsing. "Newton transformations on null hypersurfaces." Communications in Mathematics 23.1 (2015): 57-83. <http://eudml.org/doc/271589>.

@article{Fotsing2015,
abstract = {Any rigged null hypersurface is provided with two shape operators: with respect to the rigging and the rigged vector fields respectively. The present paper deals with the Newton transformations built on both of them and establishes related curvature properties. The laters are used to derive necessary and sufficient conditions for higher-order umbilicity and maximality we introduced in passing, and develop general Minkowski-type formulas for the null hypersurface, supported by some physical models in perfect-fluid space-times.},
author = {Fotsing, Cyriaque Atindogbé and Hans Tetsing},
journal = {Communications in Mathematics},
keywords = {Null hypersurfaces; null rigging; Newton transformations; Minkowski integral formulas},
language = {eng},
number = {1},
pages = {57-83},
publisher = {University of Ostrava},
title = {Newton transformations on null hypersurfaces},
url = {http://eudml.org/doc/271589},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Fotsing, Cyriaque Atindogbé and Hans Tetsing
TI - Newton transformations on null hypersurfaces
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 1
SP - 57
EP - 83
AB - Any rigged null hypersurface is provided with two shape operators: with respect to the rigging and the rigged vector fields respectively. The present paper deals with the Newton transformations built on both of them and establishes related curvature properties. The laters are used to derive necessary and sufficient conditions for higher-order umbilicity and maximality we introduced in passing, and develop general Minkowski-type formulas for the null hypersurface, supported by some physical models in perfect-fluid space-times.
LA - eng
KW - Null hypersurfaces; null rigging; Newton transformations; Minkowski integral formulas
UR - http://eudml.org/doc/271589
ER -

References

top
  1. Alías, L. J., Jr, A. Brasil, Colares, A. Gervasio, 10.1017/S0013091502000500, Proc. Edinb. Math. Soc., 46, 2003, 465-488, (2003) MR1998575DOI10.1017/S0013091502000500
  2. Alías, L. J., Lira, J. H. S. de, Malacarne, J. M., 10.1017/S1474748006000077, Journal of the Institute of Mathematics of Jussieu, 5, 04, 2006, 527-562, (2006) Zbl1118.53038MR2261223DOI10.1017/S1474748006000077
  3. Alías, L. J., Romero, A., Sánchez, M., 10.1007/BF02105675, Gen. Relat. Grav., 27, 1995, 71-84, (1995) MR1310212DOI10.1007/BF02105675
  4. Alías, L. J., Romero, A., Sánchez, M., 10.2748/tmj/1178225107, Tohoku Math. J., 49, 1997, 337-345, (1997) Zbl0912.53046MR1464181DOI10.2748/tmj/1178225107
  5. Atindogbe, C., Blaschke type normalization on light-Like Hypersurfaces, Journal of Mathematical Physics, Analysis, Geometry, 6, 4, 2010, 362-382, (2010) Zbl1230.53013MR2789299
  6. Atindogbe, C., 10.1016/j.geomphys.2010.06.018, Journal of Geometry and Physics, 60, 2010, 1762-1770, (2010) MR2679419DOI10.1016/j.geomphys.2010.06.018
  7. Atindogbe, C., Berard-Bergery, L., Distinguished normalization on non-minimal null hypersurfaces, Mathematical Sciences and Applications E-notes, 1, 1, 2013, 18-35, (2013) Zbl1353.53070
  8. Atindogbe, C., Duggal, K.L., Conformal screen on null hypersurfaces, Int. J. of Pure and Applied Math., 11, 4, 2004, 421-442, (2004) MR2039644
  9. Atindogbe, C., Ezin, J.-P., Tossa, J., 10.1155/S0161171203301309, Int. J. of Mathematics and Mathematical Sciences, 55, 2003, 3479-3501, (2003) MR2019290DOI10.1155/S0161171203301309
  10. Bivens, I., 10.1090/S0002-9939-1983-0691289-2, Proc.Am. Math. Soc., 88, 1983, 113-118, (1983) Zbl0523.53053MR0691289DOI10.1090/S0002-9939-1983-0691289-2
  11. Dong, J., Liu, X., 10.1155/2014/974695., ISRN Geometry, 2014, 2014, Article ID 974695, http://dx.doi.org/10.1155/2014/974695.. (2014) Zbl1293.53019MR3187030DOI10.1155/2014/974695.
  12. Duggal, K. L., Bejancu, A., Degenerate hypersurface of semi-Riemannian manifolds, Bull. Inst. Politehnie Iasi (S.1), 37, 1991, 13-22, (1991) MR1313822
  13. Duggal, K. L., Giménez, A., 10.1016/j.geomphys.2004.12.004, Journal of Geometry and Physics, 55, 2005, 107-122, (2005) Zbl1111.53029MR2157417DOI10.1016/j.geomphys.2004.12.004
  14. Gutierrez, M., Olea, B., Lightlike hypersurfaces in Lorentzian manifolds, arXiv: 1207.1030v1 [math.DG], 2012, (2012) 
  15. Hsiung, C. C., 10.7146/math.scand.a-10415, Math. Scand., 2, 1954, 286-294, (1954) MR0068236DOI10.7146/math.scand.a-10415
  16. Mars, M., Wolf, T., 10.1088/0264-9381/14/8/026, Class. Quantum Grav., 14 2303, 1997, (1997) MR1468585DOI10.1088/0264-9381/14/8/026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.