A note on normal generation and generation of groups
Communications in Mathematics (2015)
- Volume: 23, Issue: 1, page 1-11
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topThom, Andreas. "A note on normal generation and generation of groups." Communications in Mathematics 23.1 (2015): 1-11. <http://eudml.org/doc/271593>.
@article{Thom2015,
abstract = {In this note we study sets of normal generators of finitely presented residually $p$-finite groups. We show that if an infinite, finitely presented, residually $p$-finite group $G$ is normally generated by $g_1,\dots ,g_k$ with order $n_1,\dots ,n_k \in \lbrace 1,2,\dots \rbrace \cup \lbrace \infty \rbrace $, then \[\beta \_1^\{(2)\}(G) \le k-1-\sum \_\{i=1\}^\{k\} \frac\{1\}\{n\_i\}\,,\]
where $\beta _1^\{(2)\}(G)$ denotes the first $\ell ^2$-Betti number of $G$. We also show that any $k$-generated group with $\beta _1^\{(2)\}(G) \ge k-1-\varepsilon $ must have girth greater than or equal $1/\varepsilon $.},
author = {Thom, Andreas},
journal = {Communications in Mathematics},
keywords = {group rings; $\ell ^2$-invariants; residually $p$-finite groups; normal generation},
language = {eng},
number = {1},
pages = {1-11},
publisher = {University of Ostrava},
title = {A note on normal generation and generation of groups},
url = {http://eudml.org/doc/271593},
volume = {23},
year = {2015},
}
TY - JOUR
AU - Thom, Andreas
TI - A note on normal generation and generation of groups
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 1
SP - 1
EP - 11
AB - In this note we study sets of normal generators of finitely presented residually $p$-finite groups. We show that if an infinite, finitely presented, residually $p$-finite group $G$ is normally generated by $g_1,\dots ,g_k$ with order $n_1,\dots ,n_k \in \lbrace 1,2,\dots \rbrace \cup \lbrace \infty \rbrace $, then \[\beta _1^{(2)}(G) \le k-1-\sum _{i=1}^{k} \frac{1}{n_i}\,,\]
where $\beta _1^{(2)}(G)$ denotes the first $\ell ^2$-Betti number of $G$. We also show that any $k$-generated group with $\beta _1^{(2)}(G) \ge k-1-\varepsilon $ must have girth greater than or equal $1/\varepsilon $.
LA - eng
KW - group rings; $\ell ^2$-invariants; residually $p$-finite groups; normal generation
UR - http://eudml.org/doc/271593
ER -
References
top- Aschenbrenner, M., Friedl, S., 3-manifold groups are virtually residually , 225, 1058, 2013, American mathematical society, (2013) Zbl1328.57002MR3100378
- Atiyah, M. F., Elliptic operators, discrete groups and von Neumann algebras, Astérisque, 32, 33, 1976, 43-72, Colloque ``Analyse et Topologie'' en l'Honneur de Henri Cartan (Orsay, 1974). (1976) Zbl0323.58015MR0420729
- Baumslag, G., 10.1090/S0002-9904-1967-11799-3, Bull. Amer. Math. Soc., 73, 1967, 618-620, (1967) Zbl0153.34904MR0212078DOI10.1090/S0002-9904-1967-11799-3
- Cheeger, J., Gromov, M., 10.1016/0040-9383(86)90039-X, Topology, 25, 2, 1986, 189-215, (1986) MR0837621DOI10.1016/0040-9383(86)90039-X
- Formanek, E., 10.1090/S0002-9939-1970-0272895-7, Proc. Amer. Math. Soc., 26, 1970, 405-407, (1970) Zbl0223.20033MR0272895DOI10.1090/S0002-9939-1970-0272895-7
- Gruenberg, K., Residual properties of infinite soluble groups, Proc. London Math. Soc. (3), 7, 1957, 29-62, (1957) Zbl0077.02901MR0087652
- Gruenberg, K., 10.1007/BF01650089, Arch. Math., 13, 1962, 408-417, (1962) Zbl0111.02804MR0159881DOI10.1007/BF01650089
- Jennings, S. A., 10.4153/CJM-1955-022-5, Canad. J. Math., 7, 1955, 169-187, (1955) Zbl0066.01302MR0068540DOI10.4153/CJM-1955-022-5
- Lackenby, M., 10.1215/S0012-7094-07-13616-0, Duke Math. J., 136, 1, 2007, 181-203, (2007) Zbl1109.57015MR2271299DOI10.1215/S0012-7094-07-13616-0
- Lück, W., Dimension theory of arbitrary modules over finite von Neumann algebras and -Betti numbers. II. Applications to Grothendieck groups, -Euler characteristics and Burnside groups, J. Reine Angew. Math., 496, 1998, 213-236, (1998) Zbl1001.55019MR1605818
- Lück, W., -invariants: theory and applications to geometry and -theory, 44, 2002, Springer-Verlag, Berlin, (2002) MR1926649
- Lück, W., Osin, D., 10.1142/S1793525311000532, J. Topol. Anal., 3, 2, 2011, 153-160, (2011) Zbl1243.20039MR2819192DOI10.1142/S1793525311000532
- Osin, D., Thom, A., 10.1007/s00208-012-0828-7, Math. Ann., 355, 4, 2013, 1331-1347, (2013) Zbl1286.20052MR3037017DOI10.1007/s00208-012-0828-7
- Peterson, J., Thom, A., 10.1007/s00222-011-0310-2, Invent. Math., 185, 3, 2011, 561-592, (2011) Zbl1227.22003MR2827095DOI10.1007/s00222-011-0310-2
- Pichot, M., 10.4171/CMH/67, Comment. Math. Helv., 81, 3, 2006, 643-652, (2006) MR2250857DOI10.4171/CMH/67
- Platonov, V. P., A certain problem for finitely generated groups, Dokl. Akad. Nauk USSR, 12, 1968, 492-494, (1968) Zbl0228.20018MR0231897
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.