A note on normal generation and generation of groups

Andreas Thom

Communications in Mathematics (2015)

  • Volume: 23, Issue: 1, page 1-11
  • ISSN: 1804-1388

Abstract

top
In this note we study sets of normal generators of finitely presented residually p -finite groups. We show that if an infinite, finitely presented, residually p -finite group G is normally generated by g 1 , , g k with order n 1 , , n k { 1 , 2 , } { } , then β 1 ( 2 ) ( G ) k - 1 - i = 1 k 1 n i , where β 1 ( 2 ) ( G ) denotes the first 2 -Betti number of G . We also show that any k -generated group with β 1 ( 2 ) ( G ) k - 1 - ε must have girth greater than or equal 1 / ε .

How to cite

top

Thom, Andreas. "A note on normal generation and generation of groups." Communications in Mathematics 23.1 (2015): 1-11. <http://eudml.org/doc/271593>.

@article{Thom2015,
abstract = {In this note we study sets of normal generators of finitely presented residually $p$-finite groups. We show that if an infinite, finitely presented, residually $p$-finite group $G$ is normally generated by $g_1,\dots ,g_k$ with order $n_1,\dots ,n_k \in \lbrace 1,2,\dots \rbrace \cup \lbrace \infty \rbrace $, then \[\beta \_1^\{(2)\}(G) \le k-1-\sum \_\{i=1\}^\{k\} \frac\{1\}\{n\_i\}\,,\] where $\beta _1^\{(2)\}(G)$ denotes the first $\ell ^2$-Betti number of $G$. We also show that any $k$-generated group with $\beta _1^\{(2)\}(G) \ge k-1-\varepsilon $ must have girth greater than or equal $1/\varepsilon $.},
author = {Thom, Andreas},
journal = {Communications in Mathematics},
keywords = {group rings; $\ell ^2$-invariants; residually $p$-finite groups; normal generation},
language = {eng},
number = {1},
pages = {1-11},
publisher = {University of Ostrava},
title = {A note on normal generation and generation of groups},
url = {http://eudml.org/doc/271593},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Thom, Andreas
TI - A note on normal generation and generation of groups
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 1
SP - 1
EP - 11
AB - In this note we study sets of normal generators of finitely presented residually $p$-finite groups. We show that if an infinite, finitely presented, residually $p$-finite group $G$ is normally generated by $g_1,\dots ,g_k$ with order $n_1,\dots ,n_k \in \lbrace 1,2,\dots \rbrace \cup \lbrace \infty \rbrace $, then \[\beta _1^{(2)}(G) \le k-1-\sum _{i=1}^{k} \frac{1}{n_i}\,,\] where $\beta _1^{(2)}(G)$ denotes the first $\ell ^2$-Betti number of $G$. We also show that any $k$-generated group with $\beta _1^{(2)}(G) \ge k-1-\varepsilon $ must have girth greater than or equal $1/\varepsilon $.
LA - eng
KW - group rings; $\ell ^2$-invariants; residually $p$-finite groups; normal generation
UR - http://eudml.org/doc/271593
ER -

References

top
  1. Aschenbrenner, M., Friedl, S., 3-manifold groups are virtually residually p , 225, 1058, 2013, American mathematical society, (2013) Zbl1328.57002MR3100378
  2. Atiyah, M. F., Elliptic operators, discrete groups and von Neumann algebras, Astérisque, 32, 33, 1976, 43-72, Colloque ``Analyse et Topologie'' en l'Honneur de Henri Cartan (Orsay, 1974). (1976) Zbl0323.58015MR0420729
  3. Baumslag, G., 10.1090/S0002-9904-1967-11799-3, Bull. Amer. Math. Soc., 73, 1967, 618-620, (1967) Zbl0153.34904MR0212078DOI10.1090/S0002-9904-1967-11799-3
  4. Cheeger, J., Gromov, M., 10.1016/0040-9383(86)90039-X, Topology, 25, 2, 1986, 189-215, (1986) MR0837621DOI10.1016/0040-9383(86)90039-X
  5. Formanek, E., 10.1090/S0002-9939-1970-0272895-7, Proc. Amer. Math. Soc., 26, 1970, 405-407, (1970) Zbl0223.20033MR0272895DOI10.1090/S0002-9939-1970-0272895-7
  6. Gruenberg, K., Residual properties of infinite soluble groups, Proc. London Math. Soc. (3), 7, 1957, 29-62, (1957) Zbl0077.02901MR0087652
  7. Gruenberg, K., 10.1007/BF01650089, Arch. Math., 13, 1962, 408-417, (1962) Zbl0111.02804MR0159881DOI10.1007/BF01650089
  8. Jennings, S. A., 10.4153/CJM-1955-022-5, Canad. J. Math., 7, 1955, 169-187, (1955) Zbl0066.01302MR0068540DOI10.4153/CJM-1955-022-5
  9. Lackenby, M., 10.1215/S0012-7094-07-13616-0, Duke Math. J., 136, 1, 2007, 181-203, (2007) Zbl1109.57015MR2271299DOI10.1215/S0012-7094-07-13616-0
  10. Lück, W., Dimension theory of arbitrary modules over finite von Neumann algebras and L 2 -Betti numbers. II. Applications to Grothendieck groups, L 2 -Euler characteristics and Burnside groups, J. Reine Angew. Math., 496, 1998, 213-236, (1998) Zbl1001.55019MR1605818
  11. Lück, W., L 2 -invariants: theory and applications to geometry and K -theory, 44, 2002, Springer-Verlag, Berlin, (2002) MR1926649
  12. Lück, W., Osin, D., 10.1142/S1793525311000532, J. Topol. Anal., 3, 2, 2011, 153-160, (2011) Zbl1243.20039MR2819192DOI10.1142/S1793525311000532
  13. Osin, D., Thom, A., 10.1007/s00208-012-0828-7, Math. Ann., 355, 4, 2013, 1331-1347, (2013) Zbl1286.20052MR3037017DOI10.1007/s00208-012-0828-7
  14. Peterson, J., Thom, A., 10.1007/s00222-011-0310-2, Invent. Math., 185, 3, 2011, 561-592, (2011) Zbl1227.22003MR2827095DOI10.1007/s00222-011-0310-2
  15. Pichot, M., 10.4171/CMH/67, Comment. Math. Helv., 81, 3, 2006, 643-652, (2006) MR2250857DOI10.4171/CMH/67
  16. Platonov, V. P., A certain problem for finitely generated groups, Dokl. Akad. Nauk USSR, 12, 1968, 492-494, (1968) Zbl0228.20018MR0231897

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.