On a class of nonlocal problem involving a critical exponent

Anass Ourraoui

Communications in Mathematics (2015)

  • Volume: 23, Issue: 1, page 47-55
  • ISSN: 1804-1388

Abstract

top
In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal p -Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.

How to cite

top

Ourraoui, Anass. "On a class of nonlocal problem involving a critical exponent." Communications in Mathematics 23.1 (2015): 47-55. <http://eudml.org/doc/271606>.

@article{Ourraoui2015,
abstract = {In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal $p$-Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.},
author = {Ourraoui, Anass},
journal = {Communications in Mathematics},
keywords = {$p$-Laplacian; Dirichlet problem; critical exponent; anisotropic variable exponent equation; Krasnoselskii's genus},
language = {eng},
number = {1},
pages = {47-55},
publisher = {University of Ostrava},
title = {On a class of nonlocal problem involving a critical exponent},
url = {http://eudml.org/doc/271606},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Ourraoui, Anass
TI - On a class of nonlocal problem involving a critical exponent
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 1
SP - 47
EP - 55
AB - In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal $p$-Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.
LA - eng
KW - $p$-Laplacian; Dirichlet problem; critical exponent; anisotropic variable exponent equation; Krasnoselskii's genus
UR - http://eudml.org/doc/271606
ER -

References

top
  1. Alves, C.O., Corrêa, F.J.S.A., Figueiredo, G.M., 10.7153/dea-02-25, Differential Equation and Applications, 2, 2010, 409-417, (2010) Zbl1198.35281MR2731312DOI10.7153/dea-02-25
  2. Azorero, J.G., Alonso, I.P., 10.2307/2001562, Trans. Amer. Math. Soc., 323, 2, 1991, 877-895, (1991) Zbl0729.35051MR1083144DOI10.2307/2001562
  3. Hamidi, A. El, Rakotoson, J.M., Compactness and quasilinear problems with critical exponents, Differ. Integral Equ., 18, 2005, 1201-1220, (2005) Zbl1212.35113MR2174817
  4. Figueiredo, M. G., 10.1016/j.jmaa.2012.12.053, J. Math. Anal. Appl., 401, 2013, 706-713, (2013) Zbl1307.35110MR3018020DOI10.1016/j.jmaa.2012.12.053
  5. Figueiredo, G. M., Santos, Jefferson A., On a Φ -Kirchhoff multivalued problem with critical growth in an Orlicz-Sobolev space, Asymptotic Analysis, 89, 1, 2014, 151-172, (2014) Zbl1304.35254MR3251917
  6. Fiscella, A., Valdinoci, E., 10.1016/j.na.2013.08.011, Nonlinear Anal., 94, 2014, 156-170, (2014) Zbl1283.35156MR3120682DOI10.1016/j.na.2013.08.011
  7. Fukagai, N., Narukawa, K., 10.1619/fesi.49.235, Funkciallaj Ekvacioj, 49, 1981, 235-267, (1981) MR2271234DOI10.1619/fesi.49.235
  8. Lions, P. L., 10.4171/RMI/6, Rev Mat Iberoamericana, 1, 1985, 145-201, (1985) MR0834360DOI10.4171/RMI/6
  9. Ourraoui, A., 10.1016/j.crma.2014.01.015, C. R. Acad. Sci. Paris, 352, 2014, 295-298, (2014) Zbl1298.35096MR3186916DOI10.1016/j.crma.2014.01.015
  10. Pucci, P., Geometric description of the mountain pass critical points, Contemporary Mathematicians, 2, 2014, 469-471. (2014) 
  11. Pucci, P., Saldi, S., Critical stationary Kirchhoff equations in R N involving nonlocal operators, Rev. Mat. Iberoam., 2014, (2014) MR3470662
  12. Willem, M., Minimax Theorems, 1996, Springer, (1996) Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.