On a class of nonlocal problem involving a critical exponent

Anass Ourraoui

Communications in Mathematics (2015)

  • Volume: 23, Issue: 1, page 47-55
  • ISSN: 1804-1388

Abstract

top
In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal p -Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.

How to cite

top

Ourraoui, Anass. "On a class of nonlocal problem involving a critical exponent." Communications in Mathematics 23.1 (2015): 47-55. <http://eudml.org/doc/271606>.

@article{Ourraoui2015,
abstract = {In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal $p$-Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.},
author = {Ourraoui, Anass},
journal = {Communications in Mathematics},
keywords = {$p$-Laplacian; Dirichlet problem; critical exponent; anisotropic variable exponent equation; Krasnoselskii's genus},
language = {eng},
number = {1},
pages = {47-55},
publisher = {University of Ostrava},
title = {On a class of nonlocal problem involving a critical exponent},
url = {http://eudml.org/doc/271606},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Ourraoui, Anass
TI - On a class of nonlocal problem involving a critical exponent
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 1
SP - 47
EP - 55
AB - In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal $p$-Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.
LA - eng
KW - $p$-Laplacian; Dirichlet problem; critical exponent; anisotropic variable exponent equation; Krasnoselskii's genus
UR - http://eudml.org/doc/271606
ER -

References

top
  1. Alves, C.O., Corrêa, F.J.S.A., Figueiredo, G.M., 10.7153/dea-02-25, Differential Equation and Applications, 2, 2010, 409-417, (2010) Zbl1198.35281MR2731312DOI10.7153/dea-02-25
  2. Azorero, J.G., Alonso, I.P., 10.2307/2001562, Trans. Amer. Math. Soc., 323, 2, 1991, 877-895, (1991) Zbl0729.35051MR1083144DOI10.2307/2001562
  3. Hamidi, A. El, Rakotoson, J.M., Compactness and quasilinear problems with critical exponents, Differ. Integral Equ., 18, 2005, 1201-1220, (2005) Zbl1212.35113MR2174817
  4. Figueiredo, M. G., 10.1016/j.jmaa.2012.12.053, J. Math. Anal. Appl., 401, 2013, 706-713, (2013) Zbl1307.35110MR3018020DOI10.1016/j.jmaa.2012.12.053
  5. Figueiredo, G. M., Santos, Jefferson A., On a Φ -Kirchhoff multivalued problem with critical growth in an Orlicz-Sobolev space, Asymptotic Analysis, 89, 1, 2014, 151-172, (2014) Zbl1304.35254MR3251917
  6. Fiscella, A., Valdinoci, E., 10.1016/j.na.2013.08.011, Nonlinear Anal., 94, 2014, 156-170, (2014) Zbl1283.35156MR3120682DOI10.1016/j.na.2013.08.011
  7. Fukagai, N., Narukawa, K., 10.1619/fesi.49.235, Funkciallaj Ekvacioj, 49, 1981, 235-267, (1981) MR2271234DOI10.1619/fesi.49.235
  8. Lions, P. L., 10.4171/RMI/6, Rev Mat Iberoamericana, 1, 1985, 145-201, (1985) MR0834360DOI10.4171/RMI/6
  9. Ourraoui, A., 10.1016/j.crma.2014.01.015, C. R. Acad. Sci. Paris, 352, 2014, 295-298, (2014) Zbl1298.35096MR3186916DOI10.1016/j.crma.2014.01.015
  10. Pucci, P., Geometric description of the mountain pass critical points, Contemporary Mathematicians, 2, 2014, 469-471. (2014) 
  11. Pucci, P., Saldi, S., Critical stationary Kirchhoff equations in R N involving nonlocal operators, Rev. Mat. Iberoam., 2014, (2014) MR3470662
  12. Willem, M., Minimax Theorems, 1996, Springer, (1996) Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.