Oscillation conditions for difference equations with several variable arguments
George E. Chatzarakis; Takaŝi Kusano; Ioannis P. Stavroulakis
Mathematica Bohemica (2015)
- Volume: 140, Issue: 3, page 291-311
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChatzarakis, George E., Kusano, Takaŝi, and Stavroulakis, Ioannis P.. "Oscillation conditions for difference equations with several variable arguments." Mathematica Bohemica 140.3 (2015): 291-311. <http://eudml.org/doc/271621>.
@article{Chatzarakis2015,
abstract = {Consider the difference equation \[ \Delta x(n)+\sum \_\{i=1\}^\{m\}p\_\{i\}(n)x(\tau \_\{i\}(n))=0,\quad n\ge 0\quad \bigg [\nabla x(n)-\sum \_\{i=1\}^\{m\}p\_\{i\}(n)x(\sigma \_\{i\}(n))=0,\quad n\ge 1\bigg ], \]
where $(p_\{i\}(n))$, $1\le i\le m$ are sequences of nonnegative real numbers, $\tau _\{i\}(n)$ [$\sigma _\{i\}(n)$], $1\le i\le m$ are general retarded (advanced) arguments and $\Delta $ [$\nabla $] denotes the forward (backward) difference operator $\Delta x(n)=x(n+1)-x(n)$ [$\nabla x(n)=x(n)-x(n-1)$]. New oscillation criteria are established when the well-known oscillation conditions \[ \limsup \_\{n\rightarrow \infty \}\sum \_\{i=1\}^\{m\}\sum \_\{j=\tau (n)\}^\{n\}p\_\{i\}(j)>1 \quad \bigg [\limsup \_\{n\rightarrow \infty \}\sum \_\{i=1\}^\{m\}\sum \_\{j=n\}^\{\sigma (n)\}p\_\{i\}(j)>1\bigg ] \]
and \[ \liminf \_\{n\rightarrow \infty \}\sum \_\{i=1\}^\{m\}\sum \_\{j=\tau \_\{i\}(n)\}^\{n-1\}p\_\{i\}(j)>\frac\{1\}\{\rm e\} \quad \bigg [\liminf \_\{n\rightarrow \infty \}\sum \_\{i=1\}^\{m\}\sum \_\{j=n+1\}^\{\sigma \_\{i\}(n)\}p\_\{i\}(j)>\frac\{1\}\{\rm e\}\bigg ] \]
are not satisfied. Here $\tau (n)=\max _\{1\le i\le m\}\tau _\{i\}(n)$$[ \sigma (n)=\min _\{1\le i\le m\}\sigma _\{i\}(n) ]$. The results obtained essentially improve known results in the literature. Examples illustrating the results are also given.},
author = {Chatzarakis, George E., Kusano, Takaŝi, Stavroulakis, Ioannis P.},
journal = {Mathematica Bohemica},
keywords = {difference equation; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution},
language = {eng},
number = {3},
pages = {291-311},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation conditions for difference equations with several variable arguments},
url = {http://eudml.org/doc/271621},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Chatzarakis, George E.
AU - Kusano, Takaŝi
AU - Stavroulakis, Ioannis P.
TI - Oscillation conditions for difference equations with several variable arguments
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 3
SP - 291
EP - 311
AB - Consider the difference equation \[ \Delta x(n)+\sum _{i=1}^{m}p_{i}(n)x(\tau _{i}(n))=0,\quad n\ge 0\quad \bigg [\nabla x(n)-\sum _{i=1}^{m}p_{i}(n)x(\sigma _{i}(n))=0,\quad n\ge 1\bigg ], \]
where $(p_{i}(n))$, $1\le i\le m$ are sequences of nonnegative real numbers, $\tau _{i}(n)$ [$\sigma _{i}(n)$], $1\le i\le m$ are general retarded (advanced) arguments and $\Delta $ [$\nabla $] denotes the forward (backward) difference operator $\Delta x(n)=x(n+1)-x(n)$ [$\nabla x(n)=x(n)-x(n-1)$]. New oscillation criteria are established when the well-known oscillation conditions \[ \limsup _{n\rightarrow \infty }\sum _{i=1}^{m}\sum _{j=\tau (n)}^{n}p_{i}(j)>1 \quad \bigg [\limsup _{n\rightarrow \infty }\sum _{i=1}^{m}\sum _{j=n}^{\sigma (n)}p_{i}(j)>1\bigg ] \]
and \[ \liminf _{n\rightarrow \infty }\sum _{i=1}^{m}\sum _{j=\tau _{i}(n)}^{n-1}p_{i}(j)>\frac{1}{\rm e} \quad \bigg [\liminf _{n\rightarrow \infty }\sum _{i=1}^{m}\sum _{j=n+1}^{\sigma _{i}(n)}p_{i}(j)>\frac{1}{\rm e}\bigg ] \]
are not satisfied. Here $\tau (n)=\max _{1\le i\le m}\tau _{i}(n)$$[ \sigma (n)=\min _{1\le i\le m}\sigma _{i}(n) ]$. The results obtained essentially improve known results in the literature. Examples illustrating the results are also given.
LA - eng
KW - difference equation; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution
UR - http://eudml.org/doc/271621
ER -
References
top- Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., Discrete Oscillation Theory, Hindawi Publishing Corporation New York (2005). (2005) Zbl1084.39001MR2179948
- Baštinec, J., Berezansky, L., Diblík, J., Šmarda, Z., A final result on the oscillation of solutions of the linear discrete delayed equation with a positive coefficient, Abstr. Appl. Anal. 2011 (2011), Article No. 586328, 28 pages. (2011) Zbl1223.39008MR2824906
- Baštinec, J., Diblík, J., 10.1016/j.na.2005.01.007, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods (electronic only) 63 (2005), e2145--e2151. (2005) Zbl1224.39002DOI10.1016/j.na.2005.01.007
- Baštinec, J., Diblík, J., Šmarda, Z., 10.1080/10236190902718026, J. Difference Equ. Appl. 16 (2010), 1047-1056. (2010) Zbl1207.39014MR2722821DOI10.1080/10236190902718026
- Berezansky, L., Braverman, E., On existence of positive solutions for linear difference equations with several delays, Adv. Dyn. Syst. Appl. 1 (2006), 29-47. (2006) Zbl1124.39002MR2287633
- Chatzarakis, G. E., Koplatadze, R., Stavroulakis, I. P., 10.2140/pjm.2008.235.15, Pac. J. Math. 235 (2008), 15-33. (2008) Zbl1153.39010MR2379767DOI10.2140/pjm.2008.235.15
- Chatzarakis, G. E., Manojlovic, J., Pinelas, S., Stavroulakis, I. P., Oscillation criteria of difference equations with several deviating arguments, Yokohama Math. J. 60 (2014), 13-31. (2014) Zbl1318.39011MR3328615
- Chatzarakis, G. E., Philos, C. G., Stavroulakis, I. P., 10.4171/PM/1853, Port. Math. (N.S.) 66 (2009), 513-533. (2009) Zbl1186.39010MR2567680DOI10.4171/PM/1853
- Chatzarakis, G. E., Pinelas, S., Stavroulakis, I. P., 10.1007/s00010-013-0238-2, Aequationes Math. 88 (2014), 105-123. (2014) Zbl1306.39007MR3250787DOI10.1007/s00010-013-0238-2
- Erbe, L. H., Zhang, B. G., Oscillation of discrete analogues of delay equations, Differ. Integral Equ. 2 (1989), 300-309. (1989) Zbl0723.39004MR0983682
- Fukagai, N., Kusano, T., Oscillation theory of first order functional-differential equations with deviating arguments, Ann. Mat. Pura Appl. (4) 136 (1984), 95-117. (1984) Zbl0552.34062MR0765918
- Grammatikopoulos, M. K., Koplatadze, R., Stavroulakis, I. P., 10.1515/GMJ.2003.63, Georgian Math. J. 10 (2003), 63-76. (2003) Zbl1051.34051MR1990688DOI10.1515/GMJ.2003.63
- Győri, I., Ladas, G., Oscillation Theory of Delay Differential Equations: With Applications, Oxford Mathematical Monographs Clarendon Press, Oxford (1991). (1991) Zbl0780.34048MR1168471
- Lakshmikantham, V., Trigiante, D., Theory of Difference Equations: Numerical Methods and Applications, Mathematics in Science and Engineering 181 Academic Press, Boston (1988). (1988) Zbl0683.39001MR0939611
- Li, X., Zhu, D., Oscillation of advanced difference equations with variable coefficients, Ann. Differ. Equations 18 (2002), 254-263. (2002) Zbl1010.39001MR1940383
- Luo, X. N., Zhou, Y., Li, C. F., Oscillation of a nonlinear difference equation with several delays, Math. Bohem. 128 (2003), 309-317. (2003) Zbl1055.39015MR2012607
- Stavroulakis, I. P., 10.1016/j.amc.2013.10.041, Appl. Math. Comput. 226 (2014), 661-672. (2014) Zbl1354.34120MR3144341DOI10.1016/j.amc.2013.10.041
- Tang, X. H., Yu, J. S., 10.14492/hokmj/1350912965, Hokkaido Math. J. 29 (2000), 213-228. (2000) Zbl0958.39015MR1745511DOI10.14492/hokmj/1350912965
- Tang, X. H., Yu, J. S., 10.1016/S0898-1221(99)00083-8, Comput. Math. Appl. 37 (1999), 11-20. (1999) Zbl0937.39012MR1688201DOI10.1016/S0898-1221(99)00083-8
- Tang, X. H., Zhang, R. Y., 10.1016/S0898-1221(01)00243-7, Comput. Math. Appl. 42 (2001), 1319-1330. (2001) Zbl1002.39022MR1861531DOI10.1016/S0898-1221(01)00243-7
- Yan, W., Meng, Q., Yan, J., Oscillation criteria for difference equation of variable delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal. 13A (2006), 641-647. (2006) MR2219618
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.