Hardy-Rogers-type fixed point theorems for α - G F -contractions

Muhammad Arshad; Eskandar Ameer; Aftab Hussain

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 3, page 129-141
  • ISSN: 0044-8753

Abstract

top
The aim of this paper is to introduce some new fixed point results of Hardy-Rogers-type for α - η - G F -contraction in a complete metric space. We extend the concept of F -contraction into an α - η - G F -contraction of Hardy-Rogers-type. An example has been constructed to demonstrate the novelty of our results.

How to cite

top

Arshad, Muhammad, Ameer, Eskandar, and Hussain, Aftab. "Hardy-Rogers-type fixed point theorems for $\alpha $-$GF$-contractions." Archivum Mathematicum 051.3 (2015): 129-141. <http://eudml.org/doc/271622>.

@article{Arshad2015,
abstract = {The aim of this paper is to introduce some new fixed point results of Hardy-Rogers-type for $\alpha $-$\eta $-$GF$-contraction in a complete metric space. We extend the concept of $F$-contraction into an $\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type. An example has been constructed to demonstrate the novelty of our results.},
author = {Arshad, Muhammad, Ameer, Eskandar, Hussain, Aftab},
journal = {Archivum Mathematicum},
keywords = {metric space; fixed point; $F$-contraction; $\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type},
language = {eng},
number = {3},
pages = {129-141},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hardy-Rogers-type fixed point theorems for $\alpha $-$GF$-contractions},
url = {http://eudml.org/doc/271622},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Arshad, Muhammad
AU - Ameer, Eskandar
AU - Hussain, Aftab
TI - Hardy-Rogers-type fixed point theorems for $\alpha $-$GF$-contractions
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 3
SP - 129
EP - 141
AB - The aim of this paper is to introduce some new fixed point results of Hardy-Rogers-type for $\alpha $-$\eta $-$GF$-contraction in a complete metric space. We extend the concept of $F$-contraction into an $\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type. An example has been constructed to demonstrate the novelty of our results.
LA - eng
KW - metric space; fixed point; $F$-contraction; $\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type
UR - http://eudml.org/doc/271622
ER -

References

top
  1. Abdeljawad, T., 10.1186/1687-1812-2013-19, Fixed Point Theory Appl. (2013). DOI: http://dx.doi.org/10.1186/1687-1812-2013-19 (2013) Zbl1295.54038MR3022841DOI10.1186/1687-1812-2013-19
  2. Arshad, M., Fahimuddin,, Shoaib, A., Hussain, A., 10.1007/s40096-014-0132, Mathematical Sciences (2014), 7 pp. DOI: http://dx.doi.org/10.1007/s40096-014-0132 (2014) DOI10.1007/s40096-014-0132
  3. Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math. 3 (1922), 133–181. (1922) 
  4. Ćirić, L.B., 10.2307/2040075, Proc. Amer. Math. Soc. 45 (1974), 267–273. (1974) Zbl0291.54056MR0356011DOI10.2307/2040075
  5. Cosentino, M., Vetro, P., 10.2298/FIL1404715C, Filomat 28 (4) (2014), 715–722. DOI: http://dx.doi.org/10.2298/FIL 1404715C (2014) MR3360064DOI10.2298/FIL1404715C
  6. Edelstein, M., 10.1112/jlms/s1-37.1.74, J. Lond. Math. Soc. 37 (1962), 74–79. (1962) Zbl0113.16503MR0133102DOI10.1112/jlms/s1-37.1.74
  7. Fisher, B., Set-valued mappings on metric spaces, Fund. Math. 112 (2) (1981), 141–145. (1981) Zbl0479.54026MR0619490
  8. Geraghty, M., 10.1090/S0002-9939-1973-0334176-5, Proc. Amer. Math. Soc. 40 (1973), 604–608. (1973) Zbl0245.54027MR0334176DOI10.1090/S0002-9939-1973-0334176-5
  9. Hussain, N., Al-Mezel, S., Salimi, P., Fixed points for α - ψ -graphic contractions with application to integral equations, Abstr. Appl. Anal. (2013), Article 575869. (2013) MR3108673
  10. Hussain, N., Arshad, M., Shoaib, A., Fahimuddin,, Common fixed point results for α - ψ -contractions on a metric space endowed with graph, J. Inequal. Appl. 136 (2014). (2014) Zbl1310.54050MR3284402
  11. Hussain, N., Karapınar, E., Salimi, P., Akbar, F., α -admissible mappings and related fixed point theorems, J. Inequal. Appl. 114 (2013), 1–11. (2013) Zbl1293.54023MR3047105
  12. Hussain, N., Karapınar, E., Salimi, P., Vetro, P., Fixed point results for G m -Meir-Keeler contractive and G - ( α , ψ ) -Meir-Keeler contractive mappings, Fixed Point Theory Appl. 34 (2013). (2013) Zbl1293.54024
  13. Hussain, N., Kutbi, M.A., Salimi, P., Fixed point theory in α -complete metric spaces with applications, Abstr. Appl. Anal. (2014), 11pp., Article ID 280817. (2014) MR3166589
  14. Hussain, N., Salimi, P., 10.11650/tjm.18.2014.4462, Taiwanese J. Math. 18 (6) (2014), 1879–1895. DOI: http://dx.doi.org/10.11650/tjm.18.2014.4462 (2014) MR3284036DOI10.11650/tjm.18.2014.4462
  15. Hussain, N., Salimi, P., Latif, A., Fixed point results for single and set-valued α - η - ψ -contractive mappings, Fixed Point Theory Appl. 212 (2013). (2013) Zbl1293.54025MR3103005
  16. Karapınar, E., Samet, B., Generalized ( α - ψ ) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. (2012), Article ID 793486. (2012) Zbl1252.54037MR2965472
  17. Kutbi, M.A., Arshad, M., Hussain, A., On modified α - η -contractive mappings, Abstr. Appl. Anal. 2014 (2014), 7pp., Article ID 657858. (2014) MR3246349
  18. Nadler, S.B., 10.2140/pjm.1969.30.475, Pacific J. Math. 30 (1969), 475–488. (1969) MR0254828DOI10.2140/pjm.1969.30.475
  19. Piri, H., Kumam, P., Some fixed point theorems concerning F -contraction in complete metric spaces, Fixed Point Theory Appl. 210 (2014). (2014) MR3357360
  20. Salimi, P., Latif, A., Hussain, N., Modified α - ψ -contractive mappings with applications, Fixed Point Theory Appl. 151 (2013). (2013) Zbl1293.54036MR3074018
  21. Samet, B., Vetro, C., Vetro, P., 10.1016/j.na.2011.10.014, Nonlinear Anal. 75 (2012), 2154–2165. (2012) Zbl1242.54027MR2870907DOI10.1016/j.na.2011.10.014
  22. Secelean, N.A., 10.1186/1687-1812-2013-277, Fixed Point Theory Appl. (2013), Article ID 277 (2013). DOI: http://dx.doi.org/10.1186/1687-1812-2013-277 (2013) MR3213104DOI10.1186/1687-1812-2013-277
  23. Sgroi, M., Vetro, C., 10.2298/FIL1307259S, Filomat 27 (7) (2013), 1259–1268. (2013) MR3243997DOI10.2298/FIL1307259S
  24. Wardowski, D., Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. (2012), Article ID 94 (2012). (2012) MR2949666

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.