Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives
Applications of Mathematics (2015)
- Volume: 60, Issue: 4, page 383-393
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWang, Chun, and Xu, Tian-Zhou. "Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives." Applications of Mathematics 60.4 (2015): 383-393. <http://eudml.org/doc/271626>.
@article{Wang2015,
abstract = {The aim of this paper is to study the stability of fractional differential equations in Hyers-Ulam sense. Namely, if we replace a given fractional differential equation by a fractional differential inequality, we ask when the solutions of the fractional differential inequality are close to the solutions of the strict differential equation. In this paper, we investigate the Hyers-Ulam stability of two types of fractional linear differential equations with Caputo fractional derivatives. We prove that the two types of fractional linear differential equations are Hyers-Ulam stable by applying the Laplace transform method. Finally, an example is given to illustrate the theoretical results.},
author = {Wang, Chun, Xu, Tian-Zhou},
journal = {Applications of Mathematics},
keywords = {Hyers-Ulam stability; Laplace transform method; fractional differential equation; Caputo fractional derivative; Hyers-Ulam stability; Laplace transform method; fractional differential equation; Caputo fractional derivative},
language = {eng},
number = {4},
pages = {383-393},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives},
url = {http://eudml.org/doc/271626},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Wang, Chun
AU - Xu, Tian-Zhou
TI - Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 383
EP - 393
AB - The aim of this paper is to study the stability of fractional differential equations in Hyers-Ulam sense. Namely, if we replace a given fractional differential equation by a fractional differential inequality, we ask when the solutions of the fractional differential inequality are close to the solutions of the strict differential equation. In this paper, we investigate the Hyers-Ulam stability of two types of fractional linear differential equations with Caputo fractional derivatives. We prove that the two types of fractional linear differential equations are Hyers-Ulam stable by applying the Laplace transform method. Finally, an example is given to illustrate the theoretical results.
LA - eng
KW - Hyers-Ulam stability; Laplace transform method; fractional differential equation; Caputo fractional derivative; Hyers-Ulam stability; Laplace transform method; fractional differential equation; Caputo fractional derivative
UR - http://eudml.org/doc/271626
ER -
References
top- András, S., Mészáros, A. R., 10.1016/j.amc.2012.10.115, Appl. Math. Comput. 219 (2013), 4853-4864. (2013) MR3001534DOI10.1016/j.amc.2012.10.115
- Gordji, M. Eshaghi, Cho, Y. J., Ghaemi, M. B., Alizadeh, B., Stability of the second order partial differential equations, J. Inequal. Appl. (electronic only) 2011 (2011), Article ID 81, 10 pages. (2011) MR2847591
- Hegyi, B., Jung, S.-M., 10.1016/j.aml.2012.12.014, Appl. Math. Lett. 26 (2013), 549-552. (2013) Zbl1266.35014MR3027761DOI10.1016/j.aml.2012.12.014
- Ibrahim, R. W., Ulam stability of boundary value problem, Kragujevac J. Math. 37 (2013), 287-297. (2013) Zbl1299.30031MR3150866
- Jung, S.-M., 10.1016/j.aml.2003.11.004, Appl. Math. Lett. 17 (2004), 1135-1140. (2004) Zbl1061.34039MR2091847DOI10.1016/j.aml.2003.11.004
- Jung, S.-M., 10.1016/j.jmaa.2005.02.025, J. Math. Anal. Appl. 311 (2005), 139-146. (2005) Zbl1087.34534MR2165468DOI10.1016/j.jmaa.2005.02.025
- Jung, S.-M., 10.1016/j.aml.2005.11.004, Appl. Math. Lett. 19 (2006), 854-858. (2006) Zbl1125.34328MR2240474DOI10.1016/j.aml.2005.11.004
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204 Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073
- Lungu, N., Popa, D., 10.1016/j.jmaa.2011.06.025, J. Math. Anal. Appl. 385 (2012), 86-91. (2012) Zbl1265.26055MR2832076DOI10.1016/j.jmaa.2011.06.025
- Popa, D., Raşa, I., 10.1016/j.jmaa.2011.02.051, J. Math. Anal. Appl. 381 (2011), 530-537. (2011) Zbl1222.34069MR2802090DOI10.1016/j.jmaa.2011.02.051
- Rezaei, H., Jung, S.-M., Rassias, T. M., 10.1016/j.jmaa.2013.02.034, J. Math. Anal. Appl. 403 (2013), 244-251. (2013) Zbl1286.34077MR3035088DOI10.1016/j.jmaa.2013.02.034
- Wang, J., Lv, L., Zhou, Y., 10.1016/j.cnsns.2011.09.030, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530-2538. (2012) Zbl1252.35276MR2877697DOI10.1016/j.cnsns.2011.09.030
- Wang, J., Zhang, Y., 10.1016/j.cnsns.2014.01.016, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 3001-3010. (2014) MR3182874DOI10.1016/j.cnsns.2014.01.016
- Wang, J., Zhou, Y., 10.1016/j.aml.2011.10.009, Appl. Math. Lett. 25 (2012), 723-728. (2012) Zbl1246.34012MR2875807DOI10.1016/j.aml.2011.10.009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.