Rationality principles for preferences on belief functions

Giulianella Coletti; Davide Petturiti; Barbara Vantaggi

Kybernetika (2015)

  • Volume: 51, Issue: 3, page 486-507
  • ISSN: 0023-5954

Abstract

top
A generalized notion of lottery is considered, where the uncertainty is expressed by a belief function. Given a partial preference relation on an arbitrary set of generalized lotteries all on the same finite totally ordered set of prizes, conditions for the representability, either by a linear utility or a Choquet expected utility are provided. Both the cases of a finite and an infinite set of generalized lotteries are investigated.

How to cite

top

Coletti, Giulianella, Petturiti, Davide, and Vantaggi, Barbara. "Rationality principles for preferences on belief functions." Kybernetika 51.3 (2015): 486-507. <http://eudml.org/doc/271646>.

@article{Coletti2015,
abstract = {A generalized notion of lottery is considered, where the uncertainty is expressed by a belief function. Given a partial preference relation on an arbitrary set of generalized lotteries all on the same finite totally ordered set of prizes, conditions for the representability, either by a linear utility or a Choquet expected utility are provided. Both the cases of a finite and an infinite set of generalized lotteries are investigated.},
author = {Coletti, Giulianella, Petturiti, Davide, Vantaggi, Barbara},
journal = {Kybernetika},
keywords = {generalized lottery; preference relation; belief function; linear utility; Choquet expected utility; rationality conditions; generalized lottery; preference relation; belief function; linear utility; Choquet expected utility; rationality conditions},
language = {eng},
number = {3},
pages = {486-507},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rationality principles for preferences on belief functions},
url = {http://eudml.org/doc/271646},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Coletti, Giulianella
AU - Petturiti, Davide
AU - Vantaggi, Barbara
TI - Rationality principles for preferences on belief functions
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 3
SP - 486
EP - 507
AB - A generalized notion of lottery is considered, where the uncertainty is expressed by a belief function. Given a partial preference relation on an arbitrary set of generalized lotteries all on the same finite totally ordered set of prizes, conditions for the representability, either by a linear utility or a Choquet expected utility are provided. Both the cases of a finite and an infinite set of generalized lotteries are investigated.
LA - eng
KW - generalized lottery; preference relation; belief function; linear utility; Choquet expected utility; rationality conditions; generalized lottery; preference relation; belief function; linear utility; Choquet expected utility; rationality conditions
UR - http://eudml.org/doc/271646
ER -

References

top
  1. Chateauneuf, A., 10.1007/bf02032158, Ann. Oper. Res. 52 (1994), 3-20. Zbl0823.90005MR1293557DOI10.1007/bf02032158
  2. Chateauneuf, A., Cohen, M., Choquet expected utility model: a new approach to individual behavior under uncertainty and social choice welfare., In: Fuzzy Meas. and Int: Th. and Appl., Physica, Heidelberg 2000, pp. 289-314. MR1767756
  3. Choquet, G., 10.5802/aif.53, Ann. Inst. Fourier 5 (1954), 131-295. Zbl0679.01011MR0080760DOI10.5802/aif.53
  4. Coletti, G., Petturiti, D., Vantaggi, B., 10.1007/978-3-319-08855-6_45, In: IPMU 2014 (A. Laurent et al., eds.), Part II, CCIS 443, pp. 444-453. DOI10.1007/978-3-319-08855-6_45
  5. Coletti, G., Regoli, G., 10.1007/bf00133644, Theory and Decision 33 (1992), 3, 253-264. Zbl0769.90002MR1196662DOI10.1007/bf00133644
  6. Coletti, G., Scozzafava, R., 10.1002/int.20133, Int. J. Intell. Sys. 21 (2006), 229-259. Zbl1160.68582DOI10.1002/int.20133
  7. Coletti, G., Scozzafava, R., Vantaggi, B., 10.1016/j.ins.2012.10.034, Inform. Sci. 245 (2013), 132-145. MR3095855DOI10.1016/j.ins.2012.10.034
  8. Dempster, A. P., 10.1214/aoms/1177698950, Ann. Math. Statist. 38 (1967), 2, 325-339. Zbl0168.17501MR0207001DOI10.1214/aoms/1177698950
  9. Denneberg, D., 10.1007/978-94-017-2434-0, Theory and Decision Library: Series B, Vol. 27. Kluwer Academic, Dordrecht, Boston 1994. Zbl0968.28009MR1320048DOI10.1007/978-94-017-2434-0
  10. Dubra, J., Maccheroni, F., Ok, E. A., 10.1016/s0022-0531(03)00166-2, J. Econom. Theory 115 (2004), 118-133. Zbl1062.91025MR2036107DOI10.1016/s0022-0531(03)00166-2
  11. Ellsberg, D., 10.2307/1884324, Quart. J. Econ. 75 (1061), 643-669. Zbl1280.91045DOI10.2307/1884324
  12. Fagin, R., Halpern, J. Y., 10.1111/j.1467-8640.1991.tb00391.x, Comput. Intell. 7 (1991), 3, 160-173. Zbl0718.68066DOI10.1111/j.1467-8640.1991.tb00391.x
  13. Gale, D., The Theory of Linear Economic Models., McGraw Hill 1960. Zbl0114.12203MR0115801
  14. Gilboa, I., Schmeidler, D., 10.1016/0304-4068(89)90018-9, J. Math. Econ. 18 (1989), 2, 141-153. Zbl0675.90012MR1000102DOI10.1016/0304-4068(89)90018-9
  15. Gilboa, I., Schmeidler, D., 10.1007/bf02032160, Ann. Oper. Res. 52 (1994), 43-65. Zbl0814.28010MR1293559DOI10.1007/bf02032160
  16. Herstein, I. N., Milnor, J., 10.2307/1905540, Econometrica 21 (1953), 2, 291-297. Zbl0050.36705MR0061356DOI10.2307/1905540
  17. Jaffray, J. Y., 10.1016/0167-6377(89)90010-2, Oper. Res. Let. 8 (1989), 2, 107-112. Zbl0673.90010MR0995970DOI10.1016/0167-6377(89)90010-2
  18. Cord, M. Mc, Neufville, B. de, Lottery equivalents: Reduction of the certainty effect problem in utility assessment 
  19. Miranda, E., Cooman, G. de, Couso, I., 10.1016/j.jspi.2004.03.005, J. Stat. Plan. Inf. 133 (2005), 173-197. Zbl1101.68868MR2162574DOI10.1016/j.jspi.2004.03.005
  20. Nau, R., 10.1214/009053606000000740, Ann. Statist. 34 (2006), 5, 2430-2448. Zbl1106.62001MR2291506DOI10.1214/009053606000000740
  21. Quiggin, J., 10.1016/0167-2681(82)90008-7, J. Econom. Beh. Org. 3 (1982), 323-343. DOI10.1016/0167-2681(82)90008-7
  22. Savage, L., The Foundations of Statistics., Wiley, New York 1954. Zbl0276.62006MR0063582
  23. Shafer, G., A Mathematical Theory of Evidence., Princeton University Press 1976. Zbl0359.62002MR0464340
  24. Schmeidler, D., 10.2307/1911053, Econometrica 57 (1989), 3, 571-587. (First version: Subjective expected utility without additivity, Forder Institute Working Paper (1982)). Zbl0672.90011MR0999273DOI10.2307/1911053
  25. Schmeidler, D., 10.1090/s0002-9939-1986-0835875-8, Proc. Amer. Math. Soc. 97 (1986, 2, 255-261. Zbl0687.28008MR0835875DOI10.1090/s0002-9939-1986-0835875-8
  26. Smets, P., 10.1016/j.ijar.2004.05.003, Int. J. Approx. Reas. 38 (2005), 2, 133-147. Zbl1065.68098MR2116781DOI10.1016/j.ijar.2004.05.003
  27. Troffaes, M., 10.1016/j.ijar.2006.06.001, Int. J. Approx. Reas. 45 (2007), 1, 17-29. Zbl1119.91028MR2321707DOI10.1016/j.ijar.2006.06.001
  28. Neumann, J. von, Morgenstern, O., 10.2307/2572550, Princeton University Press 1944. MR0011937DOI10.2307/2572550
  29. Walley, P., 10.1007/978-1-4899-3472-7, Chapman and Hall, London 1991. Zbl0732.62004MR1145491DOI10.1007/978-1-4899-3472-7
  30. Wakker, P., 10.1007/bf00126589, Theory and Decis. 29 (1990), 2, 119-132. Zbl0722.90003MR1064267DOI10.1007/bf00126589
  31. Yaari, M., 10.2307/1911158, Econometrica 55 (1987), 95-115. Zbl0616.90005MR0875518DOI10.2307/1911158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.