Stability and Boundedness of Solutions of a Certain System of Third-order Nonlinear Delay Differential Equations

Mathew Omonigho Omeike

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)

  • Volume: 54, Issue: 1, page 109-119
  • ISSN: 0231-9721

Abstract

top
In this paper a number of known results on the stability and boundedness of solutions of some scalar third-order nonlinear delay differential equations are extended to some vector third-order nonlinear delay differential equations.

How to cite

top

Omeike, Mathew Omonigho. "Stability and Boundedness of Solutions of a Certain System of Third-order Nonlinear Delay Differential Equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.1 (2015): 109-119. <http://eudml.org/doc/271663>.

@article{Omeike2015,
abstract = {In this paper a number of known results on the stability and boundedness of solutions of some scalar third-order nonlinear delay differential equations are extended to some vector third-order nonlinear delay differential equations.},
author = {Omeike, Mathew Omonigho},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Lyapunov functional; third-order vector delay differential equation; boundedness; stability; boundedness},
language = {eng},
number = {1},
pages = {109-119},
publisher = {Palacký University Olomouc},
title = {Stability and Boundedness of Solutions of a Certain System of Third-order Nonlinear Delay Differential Equations},
url = {http://eudml.org/doc/271663},
volume = {54},
year = {2015},
}

TY - JOUR
AU - Omeike, Mathew Omonigho
TI - Stability and Boundedness of Solutions of a Certain System of Third-order Nonlinear Delay Differential Equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 1
SP - 109
EP - 119
AB - In this paper a number of known results on the stability and boundedness of solutions of some scalar third-order nonlinear delay differential equations are extended to some vector third-order nonlinear delay differential equations.
LA - eng
KW - Lyapunov functional; third-order vector delay differential equation; boundedness; stability; boundedness
UR - http://eudml.org/doc/271663
ER -

References

top
  1. Afuwape, A. U., 10.1016/0022-247X(83)90243-3, J. Math. Anal. Appl. 97 (1983), 140–150. (1983) MR0721235DOI10.1016/0022-247X(83)90243-3
  2. Afuwape, A. U., Omeike, M. O., Further ultimate boundedness of solutions of some system of third-order nonlinear ordinary differential equations, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20. (2004) MR2124598
  3. Afuwape, A. U., Omeike, M. O., 10.1016/j.amc.2007.11.037, Applied Mathematics and Computation 200 (2000), 444–451. (2000) MR2421659DOI10.1016/j.amc.2007.11.037
  4. Burton, T. A., Volterra Integral and Differential Equations, Academic Press, New York, 1983. (1983) Zbl0515.45001MR0715428
  5. Burton, T. A., Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orlando, 1985. (1985) Zbl0635.34001MR0837654
  6. Burton, T. A., Zhang, S., 10.1007/BF01790540, Ann. Math. Pura Appl. 145 (1986), 129–158. (1986) Zbl0626.34038MR0886710DOI10.1007/BF01790540
  7. Ezeilo, J. O. C., Tejumola, H. O., 10.1007/BF02416460, Ann. Math. Pura Appl. 74 (1966), 283–316. (1966) MR0204787DOI10.1007/BF02416460
  8. Ezeilo, J. O. C., 10.1016/0022-247X(67)90035-2, J. Math. Anal. Appl. 18 (1967), 395–416. (1967) Zbl0173.10302MR0212298DOI10.1016/0022-247X(67)90035-2
  9. Ezeilo, J. O. C., Tejumola, H. O., Further results for a system of third-order ordinary differential equations, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 143–151. (1975) MR0425261
  10. Hale, J. K., Theory of Functional Differential Equations, Springer Verlag, New York, 1977. (1977) Zbl0352.34001MR0508721
  11. Sadek, A. I., 10.1016/S0893-9659(03)00063-6, Applied Mathematics Letters 16 (2003), 657–662. (2003) Zbl1056.34078MR1986031DOI10.1016/S0893-9659(03)00063-6
  12. Sadek, A. I., 10.1016/S0096-3003(02)00925-6, Applied Mathematics and Computation 148 (2004), 587–597. (2004) Zbl1047.34089MR2015393DOI10.1016/S0096-3003(02)00925-6
  13. Tiryaki, A., Boundedness and periodicity results for a certain system of third-order nonlinear differential equations, Indian J. Pure Appl. Math. 30, 4 (1999), 361–372. (1999) Zbl0936.34041MR1695688
  14. Zhu, Y., On stability, boundedness and existence of periodic solution of a kind of third-order nonlinear delay differential system, Ann. of Diff. Eqs. 8, 2 (1992), 249–259. (1992) Zbl0758.34072MR1190138
  15. Yoshizawa, T., Stability Theory by Liapunov’s Second Method, The Mathematical Society of Japan, Tokyo, 1996. (1996) MR0208086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.