Stability and Boundedness of Solutions of Some Third-order Nonlinear Vector Delay Differential Equation
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 2, page 71-86
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topFatmi, Larbi, and Remili, Moussadek. "Stability and Boundedness of Solutions of Some Third-order Nonlinear Vector Delay Differential Equation." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.2 (2016): 71-86. <http://eudml.org/doc/287921>.
@article{Fatmi2016,
abstract = {This paper investigates the stability of the zero solution and uniformly boundedness and uniformly ultimately boundedness of all solutions of a certain vector differential equation of the third order with delay. Using the Lyapunov–Krasovskiĭ functional approach, we obtain a new result on the topic and give an example for the related illustrations.},
author = {Fatmi, Larbi, Remili, Moussadek},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Lyapunov functional; third-order vector delay differential equation; boundedness; stability},
language = {eng},
number = {2},
pages = {71-86},
publisher = {Palacký University Olomouc},
title = {Stability and Boundedness of Solutions of Some Third-order Nonlinear Vector Delay Differential Equation},
url = {http://eudml.org/doc/287921},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Fatmi, Larbi
AU - Remili, Moussadek
TI - Stability and Boundedness of Solutions of Some Third-order Nonlinear Vector Delay Differential Equation
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 2
SP - 71
EP - 86
AB - This paper investigates the stability of the zero solution and uniformly boundedness and uniformly ultimately boundedness of all solutions of a certain vector differential equation of the third order with delay. Using the Lyapunov–Krasovskiĭ functional approach, we obtain a new result on the topic and give an example for the related illustrations.
LA - eng
KW - Lyapunov functional; third-order vector delay differential equation; boundedness; stability
UR - http://eudml.org/doc/287921
ER -
References
top- Afuwape, A. U., 10.1016/0022-247X(83)90243-3, . J. Math. Anal. Appl. 97 (1983), 140–150. (1983) MR0721235DOI10.1016/0022-247X(83)90243-3
- Afuwape, A. U., Omeike, M. O., Further ultimate boundedness of solutions of some system of third-order nonlinear ordinary differential equations, . Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20. (2004) MR2124598
- Afuwape, A. U., Omeike, M. O., 10.1016/j.amc.2007.11.037, . Applied Mathematics and Computation 200 (2000), 444–451. (2000) MR2421659DOI10.1016/j.amc.2007.11.037
- Afuwape, A. U., Carvajal, Y. E., Stability and ultimate boundedness of solutions of a certain third order nonlinear vector differential equation, . J. Nigerian Math. Soc. 31 (2012), 69–80. (2012) MR2807306
- Burton, T. A., Volterra Integral and Differential Equations, . 2nd ed., Mathematics in Science and Engineering, Elsevier, New York, 2005. (2005) Zbl1075.45001MR2155102
- Burton, T. A., Stability and Periodic Solutions of Ordinary and Functional Differential Equations, . Academic Press, Orlando, 1985. (1985) Zbl0635.34001MR0837654
- Burton, T. A., Zhang, S., 10.1007/BF01790540, . Ann. Math. Pura Appl. 145 (1986), 129–158. (1986) Zbl0626.34038MR0886710DOI10.1007/BF01790540
- Ezeilo, J. O. C., 10.1016/0022-247X(67)90035-2, . J. Math. Anal. Appl. 18 (1967), 395–416. (1967) Zbl0173.10302MR0212298DOI10.1016/0022-247X(67)90035-2
- Ezeilo, J. O. C., Tejumola, H. O., 10.1007/BF02416460, . Ann. Math. Pura Appl. 74 (1966), 283–316. (1966) MR0204787DOI10.1007/BF02416460
- Ezeilo, J. O. C., Tejumola, H. O., Further results for a system of third-order ordinary differential equations, . Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 143–151, 283–316. (1975) MR0425261
- Graef, J. R., Beldjerd, D., Remili, M., On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay, . PanAmerican Mathematical Journal 25 (2015), 82–94. (2015) Zbl1331.34145MR3364326
- Graef, J. R., Oudjedi, D., Remili, M., Stability and square integrability of solutions of nonlinear third order differential equations, . Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 22 (2015), 313–324. (2015) Zbl1326.34088MR3405345
- Hale, J. K., Theory of Functional Differential Equations, . Springer Verlag, New York, 1977. (1977) Zbl0352.34001MR0508721
- Mahmoud, A. M., Tunç, C., Stability and boundedness of solutions of a certain n-dimensional nonlinear delay differential system of third-order, . Adv. Pure Appl. Math. 7, 1 (2016), 1–11. (2016) Zbl1352.34099MR3441085
- Meng, F. W., 10.1006/jmaa.1993.1273, . J. Math. Anal. Appl. 177 (1993), 496–509. (1993) MR1231497DOI10.1006/jmaa.1993.1273
- Omeike, M. O., Stability and boundedness of solutions of a certain system of third-order nonlinear delay differential equations, . Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 54, 1 (2015), 109–119. (2015) Zbl1351.34086MR3468604
- Remili, M., Beldjerd, D., 10.1007/s12215-014-0169-3, . Rend. Circ. Mat. Palermo, 63, 3 (2014), 447–455. (2014) Zbl1321.34097MR3298595DOI10.1007/s12215-014-0169-3
- Remili, M., Oudjedi, D. L., Stability and boundedness of the solutions of non autonomous third order differential equations with delay, . Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 53, 2 (2014), 139–147. (2014) MR3331011
- Remili, M., Oudjedi, D. L., Uniform stability and boundedness of a kind of third order delay differential equations, . Bull. Comput. Appl. Math., 2, 1 (2014), 25–35. (2014) MR3569688
- Sadek, A. I., 10.1016/S0893-9659(03)00063-6, . Applied Mathematics Letters, 16 (2003), 657–662. (2003) Zbl1056.34078MR1986031DOI10.1016/S0893-9659(03)00063-6
- Sadek, A. I., 10.1016/S0096-3003(02)00925-6, . Applied Mathematics and Computation, 148 (2004), 587–597. (2004) Zbl1047.34089MR2015393DOI10.1016/S0096-3003(02)00925-6
- Tiryaki, A., Boundedness and periodicity results for a certain system of third-order nonlinear differential equations, . Indian J. Pure Appl. Math., 30, 4 (1999), 361–372. (1999) Zbl0936.34041MR1695688
- Tunç, C., Gozen, M., 10.1155/2014/424512, . Abstract and Applied Analysis, 2014, ID 424512 (2014), 1–6. (2014) MR3176743DOI10.1155/2014/424512
- Tunç, C., On the boundedness of solutions of certain nonlinear vector differential equations of third order, . Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 49(97), 3 (2006), 291–300. (2006) Zbl1174.34034MR2267128
- Tunç, C., 10.1016/j.na.2008.03.002, . Nonlinear Anal., 70, 6 (2009), 2232–2236. (2009) Zbl1162.34043MR2498299DOI10.1016/j.na.2008.03.002
- Tunç, C., 10.4067/S0716-09172014000300007, . Proyecciones, 33, 3 (2014), 325–347. (2014) Zbl1310.34094MR3258732DOI10.4067/S0716-09172014000300007
- Tunç, C., New ultimate boundedness and periodicity results for certain third-order nonlinear vector differential equations, . Math. J. Okayama Univ., 48 (2006), 159–172. (2006) Zbl1138.34322MR2291176
- Yoshizawa, T., Stability Theory by Liapunov’s Second Method, . The Mathematical Society of Japan, Tokyo, 1996. (1996) MR0208086
- Zhu, Y., On stability, boundedness and existence of periodic solution of a kind of thirdorder nonlinear delay differential system, . Ann. Diff. Eqns., 8, 2 (1992), 249–259. (1992) MR1190138
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.