Another formulation of the Wick’s theorem. Farewell, pairing?
Special Matrices (2015)
- Volume: 3, Issue: 1, page 169-174, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Weinberg, The Quantum Theory of Fields: V. 1, Foundations, Cambridge University Press, Cambridge, 1995.
- [2] S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, John Weatherhill, Tokyo, 1961. Zbl0111.43102
- [3] M. E. Peskin, D. V. Schroeder, Introduction to Quantum Field Theory, Addison-Wesley, Redwood City, 1995.
- [4] N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized Fields, John Willey & Sons, New York, 1980.
- [5] J. W. Negele, H. Orland, Quantum Many-Particle Systems, Westview Press, 1998.
- [6] A. A. Abrikosov, L. P. Gor‘kov, I. E. Dzyaloshinski, Methods of QuantumField Theory in Statistical Physics, Dover Publications, Inc., New York, 1963.
- [7] A. L. Fetter, J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York, 1971.
- [8] A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Macmillan, New York, 1982.
- [9] G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Co., New York, 1961. Zbl0121.00103
- [10] M. Veltman, D. N. Williams, “Schoonschip ’91”, hep-ph/9306228.
- [11] H. Strubbe,Manual for SCHOONSCHIP a CDC 6000/7000 programfor symbolic evaluation of algebraic expressions, Comput. Phys. Commun. 8 (1974) 1–30.
- [12] The feyncalc home page, entry point to information about feyncalc and related programs for high energy physics. URL http://feyncalc.org/
- [13] A. Hsieh, HIP: Symbolic High-Energy Physics Calculations, Computers in Physics, 6 (1992) 253–261.
- [14] A. C. Hearn, REDUCE User’s Manual, Version 3.8, Santa Monica, CA, USA, 2004.
- [15] J. A. M. Vermaseren, Symbolic Manipulation with FORM, Computer Algebra Nehterlands, Amsterdam, 1991.
- [16] L. Brücher, J. Franzkowski, D. Kreimer, xloops - automated Feynman diagram calculation, Comput. Phys. Commun. 115 (1998) 140–160. Zbl1006.81500
- [17] R. ˘Zitko, SNEG – Mathematica package for symbolic calculations with second-quantization-operator expressions, Comput. Phys. Commun. 182 (2011) 2259–2264. [WoS]
- [18] C. L. Janssen, H. F. Schaefer. III, The automated solution of second quantization equations with applications to the coupled cluster approach, Theor. Chim. Acta. 79 (1991) 1–42.
- [19] S. Hirata, Tensor contraction engine: abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories, J. Phys. Chem. A 107 (2003) 9887–9897.
- [20] I. Lindgren, J. Morrison, Atomic Many–Body Theory, 2nd ed., Springer–Verlag, Berlin, 1986.
- [21] A. Derevianko, Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory, J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 074001. [Crossref][WoS]
- [22] A. Derevianko, Post-wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory, arXiv 0910.3613v1. [WoS]
- [23] S. Wolfram, The Mathematica Book, 5th ed., Wolfram Media, Champaign, USA, 2003. Zbl0924.65002
- [24] Maple 15 Programming Guide, Maplesoft, 2011. URL http://www.maplesoft.com/documentation_center/
- [25] S. Wieder, Introduction to Mathcad for Scientists and Engineers, Mcgraw-Hill College, 1992.