Flexary Operations

Karol Pąk

Formalized Mathematics (2015)

  • Volume: 23, Issue: 2, page 81-92
  • ISSN: 1426-2630

Abstract

top
In this article we introduce necessary notation and definitions to prove the Euler’s Partition Theorem according to H.S. Wilf’s lecture notes [31]. Our aim is to create an environment which allows to formalize the theorem in a way that is as similar as possible to the original informal proof. Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ [30].

How to cite

top

Karol Pąk. "Flexary Operations." Formalized Mathematics 23.2 (2015): 81-92. <http://eudml.org/doc/271785>.

@article{KarolPąk2015,
abstract = {In this article we introduce necessary notation and definitions to prove the Euler’s Partition Theorem according to H.S. Wilf’s lecture notes [31]. Our aim is to create an environment which allows to formalize the theorem in a way that is as similar as possible to the original informal proof. Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ [30].},
author = {Karol Pąk},
journal = {Formalized Mathematics},
keywords = {summation method; flexary plus; matrix generalization},
language = {eng},
number = {2},
pages = {81-92},
title = {Flexary Operations},
url = {http://eudml.org/doc/271785},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Karol Pąk
TI - Flexary Operations
JO - Formalized Mathematics
PY - 2015
VL - 23
IS - 2
SP - 81
EP - 92
AB - In this article we introduce necessary notation and definitions to prove the Euler’s Partition Theorem according to H.S. Wilf’s lecture notes [31]. Our aim is to create an environment which allows to formalize the theorem in a way that is as similar as possible to the original informal proof. Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ [30].
LA - eng
KW - summation method; flexary plus; matrix generalization
UR - http://eudml.org/doc/271785
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563-567, 1990. 
  3. [3] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992. 
  4. [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  5. [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  6. [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  7. [7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996. 
  8. [8] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  9. [9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. 
  10. [10] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  11. [11] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990. 
  12. [12] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  13. [13] Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011. doi:10.2478/v10037-011-0025-2. Zbl1276.03030
  14. [14] Marco B. Caminati. First order languages: Further syntax and semantics. Formalized Mathematics, 19(3):179-192, 2011. doi:10.2478/v10037-011-0027-0. Zbl1276.03032
  15. [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  16. [16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001. 
  17. [17] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998. 
  18. [18] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009. doi:10.2478/v10037-009-0005-y. 
  19. [19] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990. 
  20. [20] Yatsuka Nakamura and Hisashi Ito. Basic properties and concept of selected subsequence of zero based finite sequences. Formalized Mathematics, 16(3):283-288, 2008. doi:10.2478/v10037-008-0034-y. 
  21. [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  22. [22] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991. 
  23. [23] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990. 
  24. [24] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003. 
  25. [25] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  26. [26] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990. 
  27. [27] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1 (5):979-981, 1990. 
  28. [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  29. [29] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001. 
  30. [30] Freek Wiedijk. Formalizing 100 theorems. 
  31. [31] Herbert S. Wilf. Lectures on integer partitions. 
  32. [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990. 
  33. [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.