Preliminaries to Classical First Order Model Theory
Formalized Mathematics (2011)
- Volume: 19, Issue: 3, page 155-167
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topReferences
top- Broderick Arneson and Piotr Rudnicki. Recognizing chordal raphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006, doi:10.2478/v10037-006-0022-z.[Crossref]
- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.[Crossref]
- Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
- Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
- Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- M. Lothaire. Algebraic combinatorics on words. Cambridge Univ Pr, 2002. Zbl1001.68093
- Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
- Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
- Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.
Citations in EuDML Documents
top- Marco B. Caminati, Artur Korniłowicz, Pseudo-Canonical Formulae are Classical
- Marco Caminati, Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms
- Marco Caminati, First Order Languages: Further Syntax and Semantics
- Karol Pąk, Flexary Operations
- Karol Pąk, Euler’s Partition Theorem
- Marco Caminati, Sequent Calculus, Derivability, Provability. Gödel's Completeness Theorem
- Marco Caminati, Free Interpretation, Quotient Interpretation and Substitution of a Letter with a Term for First Order Languages