The -Cauchy problem on weakly -pseudoconvex domains in Stein manifolds
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 739-745
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSaber, Sayed. "The $L^2$$\bar{\partial }$-Cauchy problem on weakly $q$-pseudoconvex domains in Stein manifolds." Czechoslovak Mathematical Journal 65.3 (2015): 739-745. <http://eudml.org/doc/271800>.
@article{Saber2015,
abstract = {Let $X$ be a Stein manifold of complex dimension $n\ge 2$ and $\Omega \Subset X$ be a relatively compact domain with $C^2$ smooth boundary in $X$. Assume that $\Omega $ is a weakly $q$-pseudoconvex domain in $X$. The purpose of this paper is to establish sufficient conditions for the closed range of $\bar\{\partial \}$ on $\Omega $. Moreover, we study the $\bar\{\partial \}$-problem on $\Omega $. Specifically, we use the modified weight function method to study the weighted $\bar\{\partial \}$-problem with exact support in $\Omega $. Our method relies on the $L^2$-estimates by Hörmander (1965) and by Kohn (1973).},
author = {Saber, Sayed},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\bar\{\partial \}$ operator; $\bar\{\partial \}$-Neumann operator; $q$-convex domain; Stein manifold},
language = {eng},
number = {3},
pages = {739-745},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $L^2$$\bar\{\partial \}$-Cauchy problem on weakly $q$-pseudoconvex domains in Stein manifolds},
url = {http://eudml.org/doc/271800},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Saber, Sayed
TI - The $L^2$$\bar{\partial }$-Cauchy problem on weakly $q$-pseudoconvex domains in Stein manifolds
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 739
EP - 745
AB - Let $X$ be a Stein manifold of complex dimension $n\ge 2$ and $\Omega \Subset X$ be a relatively compact domain with $C^2$ smooth boundary in $X$. Assume that $\Omega $ is a weakly $q$-pseudoconvex domain in $X$. The purpose of this paper is to establish sufficient conditions for the closed range of $\bar{\partial }$ on $\Omega $. Moreover, we study the $\bar{\partial }$-problem on $\Omega $. Specifically, we use the modified weight function method to study the weighted $\bar{\partial }$-problem with exact support in $\Omega $. Our method relies on the $L^2$-estimates by Hörmander (1965) and by Kohn (1973).
LA - eng
KW - $\bar{\partial }$ operator; $\bar{\partial }$-Neumann operator; $q$-convex domain; Stein manifold
UR - http://eudml.org/doc/271800
ER -
References
top- Abdelkader, O., Saber, S., 10.1142/S0219887807002090, Int. J. Geom. Methods Mod. Phys. 4 (2007), 339-348. (2007) MR2343350DOI10.1142/S0219887807002090
- Cao, J., Shaw, M.-C., Wang, L., Estimates for the -Neumann problem and nonexistence of Levi-flat hypersurfaces in , Math. Z. 248 (2004), 183-221 errata dtto 248 223-225 (2004). (2004) MR2092728
- Chen, S.-C., Shaw, M.-C., Partial Differential Equations in Several Complex Variables, AMS/IP Studies in Advanced Mathematics 19 American Mathematical Society, Providence; International Press, Somerville (2001). (2001) Zbl0963.32001MR1800297
- Demailly, J.-P., Complex analytic and differential geometry, Preprint (2009) available at http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.
- Demailly, J.-P., Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér. (4) 15 French (1982), 457-511. (1982) MR0690650
- Derridj, M., Inégalités de Carleman et extension locale des fonctions holomorphes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 9 French (1982), 645-669. (1982) Zbl0548.32013MR0693782
- Derridj, M., 10.4310/jdg/1214434708, J. Differ. Geom. 13 French (1978), 559-576. (1978) MR0570218DOI10.4310/jdg/1214434708
- Harrington, P. S., Raich, A., Closed range for and on bounded hypersurfaces in Stein manifolds, arXiv:1106.0629 (2011). (2011) MR2763350
- Ho, L.-H., 10.1007/BF01459235, Math. Ann. 290 (1991), 3-18. (1991) Zbl0714.32006MR1107660DOI10.1007/BF01459235
- Hörmander, L., 10.1007/BF02391775, Acta Math. 113 (1965), 89-152. (1965) MR0179443DOI10.1007/BF02391775
- Kohn, J. J., 10.2307/1970404, Ann. Math. (2) 79 (1964), 450-472. (1964) Zbl0178.11305MR0208200DOI10.2307/1970404
- Kohn, J. J., 10.2307/1970506, Ann. Math. (2) 78 (1963), 112-148. (1963) Zbl0161.09302MR0153030DOI10.2307/1970506
- Morrow, J., Kodaira, K., Complex Manifolds. Athena Series. Selected Topics in Mathematics, Holt, Rinehart and Winston, New York (1971). (1971) MR0302937
- Saber, S., 10.2478/s12175-013-0115-4, Math. Slovaca 63 (2013), 521-530. (2013) MR3071972DOI10.2478/s12175-013-0115-4
- Saber, S., 10.1142/S0219887810003963, Int. J. Geom. Methods Mod. Phys. 7 (2010), 135-142. (2010) MR2647774DOI10.1142/S0219887810003963
- Sambou, S., Résolution du pour les courants prolongeables définis dans un anneau, Ann. Fac. Sci. Toulouse, Math. (6) 11 French (2002), 105-129. (2002) MR1986385
- Shaw, M.-C., 10.1007/BF01934348, Math. Ann. 294 (1992), 677-700. (1992) MR1190451DOI10.1007/BF01934348
- Zampieri, G., 10.1090/ulect/043, University Lecture Series 43 American Mathematical Society, Providence (2008). (2008) Zbl1160.32001MR2400390DOI10.1090/ulect/043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.