Inégalités de Carleman et extension locale des fonctions holomorphes
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)
- Volume: 9, Issue: 4, page 645-669
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] A. Andreotti - C.D. Hill, E.E. Levi convexity and the Hans Lewy problem. Part I : Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa, 26 (1972), pp. 325-363. Zbl0256.32007MR460725
- [2] A. Andreotti - E. Vesentini, Carleman estimates for the Laplace Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math., vol. 24-25. Zbl0138.06604MR175148
- [3] E. Bedford - J.E. Fornaess, Local extension of C.R. functions from weakly pseudo-convex boundaries, Michigan Math. J., 25 (1978), pp. 259-262. Zbl0401.32007MR512898
- [4] J.J. Kohn - H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math., 81 (1965), pp. 451-472. Zbl0166.33802MR177135
- [5] L. Hörmander, L2-estimates and existence theorems for the ∂-operator, Acta Math.113 (1965), pp. 89-152. Zbl0158.11002
- [6] L. Hörmander, Introduction to complex analysis in several variables, Van Nostrand (1968). Zbl0138.06203MR203075
- [7] H. Lewy, On the local character ..., Ann. of Math., 64 (1956), pp. 514-522. Zbl0074.06204MR81952
- [8] R. Nirenberg, On the H. Lewy extension phenomenon, Trans. Amer. Math. Soc., 468 (1972), pp. 337-356. Zbl0241.32006MR301234
- [9] R.O. Wells, On the local holomorphic hull..., Comm. Pure Appl. Math., 19 (1966), pp. 145-165. Zbl0142.33901MR197785
- [10] M. Landucci, Solutions with precise compact support, Bull. Soc. Math. France, 104 (1980), pp. 273-299. Zbl0444.32011MR592472
Citations in EuDML Documents
top- Makhlouf Derridj, John Erik Fornaess, A result on extension of C.R. functions
- M. Derridj, Le problème de Cauchy pour -application
- M. Derridj, Le problème de Cauchy pour et application
- Jean-Pierre Rosay, Some applications of Cauchy-Fantappie forms to (local) problems on
- Sayed Saber, The -Cauchy problem on weakly -pseudoconvex domains in Stein manifolds