Basic equations of G -almost geodesic mappings of the second type, which have the property of reciprocity

Mića S. Stanković; Milan L. Zlatanović; Nenad O. Vesić

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 3, page 787-799
  • ISSN: 0011-4642

Abstract

top
We study G -almost geodesic mappings of the second type θ π 2 ( e ) , θ = 1 , 2 between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider e -structures that generate mappings of type θ π 2 ( e ) , θ = 1 , 2 . For a mapping θ π 2 ( e , F ) , θ = 1 , 2 , we determine the basic equations which generate them.

How to cite

top

Stanković, Mića S., Zlatanović, Milan L., and Vesić, Nenad O.. "Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity." Czechoslovak Mathematical Journal 65.3 (2015): 787-799. <http://eudml.org/doc/271804>.

@article{Stanković2015,
abstract = {We study $G$-almost geodesic mappings of the second type $\underset\{\theta \}\{\rightarrow \}\pi _2(e)$, $\theta =1,2$ between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider $e$-structures that generate mappings of type $\underset\{\theta \}\{\rightarrow \}\pi _2(e)$, $\theta =1,2$. For a mapping $\underset\{\theta \}\{\rightarrow \}\pi _2(e,F)$, $\theta =1,2$, we determine the basic equations which generate them.},
author = {Stanković, Mića S., Zlatanović, Milan L., Vesić, Nenad O.},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-symmetric affine connection; almost geodesic mapping; $G$-almost geodesic mapping; property of reciprocity; almost geodesic mapping of the second type},
language = {eng},
number = {3},
pages = {787-799},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity},
url = {http://eudml.org/doc/271804},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Stanković, Mića S.
AU - Zlatanović, Milan L.
AU - Vesić, Nenad O.
TI - Basic equations of $G$-almost geodesic mappings of the second type, which have the property of reciprocity
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 787
EP - 799
AB - We study $G$-almost geodesic mappings of the second type $\underset{\theta }{\rightarrow }\pi _2(e)$, $\theta =1,2$ between non-symmetric affine connection spaces. These mappings are a generalization of the second type almost geodesic mappings defined by N. S. Sinyukov (1979). We investigate a special type of these mappings in this paper. We also consider $e$-structures that generate mappings of type $\underset{\theta }{\rightarrow }\pi _2(e)$, $\theta =1,2$. For a mapping $\underset{\theta }{\rightarrow }\pi _2(e,F)$, $\theta =1,2$, we determine the basic equations which generate them.
LA - eng
KW - non-symmetric affine connection; almost geodesic mapping; $G$-almost geodesic mapping; property of reciprocity; almost geodesic mapping of the second type
UR - http://eudml.org/doc/271804
ER -

References

top
  1. Berezovskij, V., Mikeš, J., On a classification of almost geodesic mappings of affine connection spaces, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 35 (1996), 21-24. (1996) MR1485039
  2. Berezovski, V. E., Mikeš, J., Vanžurová, A., Fundamental PDE’s of the canonical almost geodesic mappings of type π ˜ 1 , Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 647-659. (2014) Zbl1298.53018MR3234506
  3. Hall, G. S., Lonie, D. P., 10.1088/0264-9381/26/12/125009, Classical Quantum Gravity 26 (2009), Article ID 125009, 10 pages. (2009) Zbl1170.83443MR2515670DOI10.1088/0264-9381/26/12/125009
  4. Hall, G. S., Lonie, D. P., The principle of equivalence and cosmological metrics, J. Math. Phys. 49 Article ID 022502, 13 pages (2008). (2008) Zbl1153.81370MR2392851
  5. Hall, G. S., Lonie, D. P., 10.1088/0264-9381/24/14/005, Classical Quantum Gravity 24 (2007), 3617-3636. (2007) Zbl1206.83036MR2339411DOI10.1088/0264-9381/24/14/005
  6. Hinterleitner, I., 10.2298/PIM1308125H, Publ. Inst. Math. (Beograd) (N.S.) 94 (2013), 125-130, DOI:10.2298/PIM1308125H. (2013) MR3137496DOI10.2298/PIM1308125H
  7. Hinterleitner, I., Mikeš, J., Geodesic mappings and Einstein spaces, Geometric Methods in Physics P. Kielanowski, et al. Selected papers of 30. workshop, Białowiea, 2011. Trends in Mathematics Birkhäuser, Basel (2013), 331-335. (2013) Zbl1268.53049MR2882715
  8. Hinterleitner, I., Mikeš, J., 10.18514/MMN.2013.918, Miskolc Math. Notes 14 (2013), 575-582. (2013) MR3144094DOI10.18514/MMN.2013.918
  9. Mikeš, J., 10.1007/BF02414875, J. Math. Sci., New York 89 (1998), 1334-1353 translation from Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30 258-291 (1995). (1995) MR1619720DOI10.1007/BF02414875
  10. Mikeš, J., 10.1007/BF02365193, J. Math. Sci., New York 78 (1996), 311-333. (1996) MR1384327DOI10.1007/BF02365193
  11. Mikeš, J., 10.1007/BF01709156, Math. Notes 28 (1981), 922-923 translation from Mat. Zametki 28 935-938, DOI:10.1007/BF01709156 Russian (1980). (1980) Zbl0454.53018MR0603226DOI10.1007/BF01709156
  12. Mikeš, J., Pokorná, O., Starko, G., On almost geodesic mappings π 2 ( e ) onto Riemannian spaces, J. Slovák, et al. The Proceedings of the 23th Winter School Geometry and Physics, Srní, 2003 Circolo Matemàtico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 72 (2004), 151-157. (2004) Zbl1050.53021MR2069403
  13. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and Some Generalizations, Palacký University, Faculty of Science, Olomouc (2009). (2009) Zbl1222.53002MR2682926
  14. Minčić, S. M., New commutation formulas in the non-symmetric affine connexion space, Publ. Inst. Math., Nouv. Sér. 22 (1977), 189-199. (1977) Zbl0377.53008MR0482552
  15. Minčić, S. M., Ricci identities in the space of non-symmetric affine connexion, Mat. Vesn., N. Ser. 10 (1973), 161-172. (1973) Zbl0278.53012MR0341310
  16. Minčić, S. M., Stanković, M. S., Equitorsion geodesic mappings of generalized Riemannian spaces, Publ. Inst. Math., Nouv. Sér. 61 (1997), 97-104. (1997) Zbl0886.53035MR1472941
  17. Minčić, S., Stanković, M., On geodesic mappings of general affine connexion spaces and of generalized Riemannian spaces, Mat. Vesn. 49 (1997), 27-33. (1997) Zbl0949.53013MR1491944
  18. Sinyukov, N. S., Geodesic Mappings of Riemannian Spaces, Russian Nauka, Moskva (1979). (1979) Zbl0637.53020MR0552022
  19. Stanković, M., On a special almost geodesic mapping of third type of affine spaces, Novi Sad J. Math. 31 (2001), 125-135. (2001) Zbl1012.53013MR1897496
  20. Stanković, M. S., First type almost geodesic mappings of general affine connection spaces, Novi Sad J. Math. 29 (1999), 313-323. (1999) Zbl0951.53011MR1771009
  21. Stanković, M. S., On canonic almost geodesic mappings of the second type of affine spaces, Filomat 13 (1999), 105-114. (1999) Zbl0971.53011MR1803017
  22. Stanković, M. S., Minčić, S. M., New special geodesic mappings of generalized Riemannian spaces, Publ. Inst. Math., Nouv. Sér. 67 (2000), 92-102. (2000) Zbl1013.53009MR1761305
  23. Vavříková, H., Mikeš, J., Pokorná, O., Starko, G., 10.3103/S1066369X07010021, Russ. Math. 51 8-12 (2007), translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2007 10-15 (2007), Russian. (2007) Zbl1143.53019MR2335593DOI10.3103/S1066369X07010021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.