Baire classes of complex -preduals
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 659-676
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLudvík, Pavel, and Spurný, Jiří. "Baire classes of complex $L_1$-preduals." Czechoslovak Mathematical Journal 65.3 (2015): 659-676. <http://eudml.org/doc/271809>.
@article{Ludvík2015,
abstract = {Let $X$ be a complex $L_1$-predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire-$\alpha $ functions on the set $\mathop \{\rm ext\} B_\{X^*\}$ of the extreme points of the dual unit ball $B_\{X^*\}$ to the whole unit ball $B_\{X^*\}$. As a corollary we show that, given $\alpha \in [1,\omega _1)$, the intrinsic $\alpha $-th Baire class of $X$ can be identified with the space of bounded homogeneous Baire-$\alpha $ functions on the set $\mathop \{\rm ext\} B_\{X^*\}$ when $\mathop \{\rm ext\} B_\{X^*\}$ satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors’ paper: Baire classes of non-separable $L_1$-preduals (2015). As such it generalizes former work of Lindenstrauss and Wulbert (1969), Jellett (1985), and ourselves (2014), (2015).},
author = {Ludvík, Pavel, Spurný, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {complex $L_1$-predual; extreme point; Baire function},
language = {eng},
number = {3},
pages = {659-676},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Baire classes of complex $L_1$-preduals},
url = {http://eudml.org/doc/271809},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Ludvík, Pavel
AU - Spurný, Jiří
TI - Baire classes of complex $L_1$-preduals
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 659
EP - 676
AB - Let $X$ be a complex $L_1$-predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire-$\alpha $ functions on the set $\mathop {\rm ext} B_{X^*}$ of the extreme points of the dual unit ball $B_{X^*}$ to the whole unit ball $B_{X^*}$. As a corollary we show that, given $\alpha \in [1,\omega _1)$, the intrinsic $\alpha $-th Baire class of $X$ can be identified with the space of bounded homogeneous Baire-$\alpha $ functions on the set $\mathop {\rm ext} B_{X^*}$ when $\mathop {\rm ext} B_{X^*}$ satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors’ paper: Baire classes of non-separable $L_1$-preduals (2015). As such it generalizes former work of Lindenstrauss and Wulbert (1969), Jellett (1985), and ourselves (2014), (2015).
LA - eng
KW - complex $L_1$-predual; extreme point; Baire function
UR - http://eudml.org/doc/271809
ER -
References
top- Alfsen, E. M., Compact Convex Sets and Boundary Integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete 57 Springer, New York (1971). (1971) Zbl0209.42601MR0445271
- Argyros, S. A., Godefroy, G., Rosenthal, H. P., 10.1016/S1874-5849(03)80030-X, Handbook of the Geometry of Banach Spaces, Vol. 2 W. B. Johnson et al. North-Holland Amsterdam (2003), 1007-1069. (2003) Zbl1121.46008MR1999190DOI10.1016/S1874-5849(03)80030-X
- Effros, E. G., 10.1215/ijm/1256051348, Ill. J. Math. 18 (1974), 48-59. (1974) Zbl0291.46011MR0328548DOI10.1215/ijm/1256051348
- Ellis, A. J., Rao, T. S. S. R. K., Roy, A. K., Uttersrud, U., 10.1090/S0002-9947-1981-0628453-7, Trans. Am. Math. Soc. 268 (1981), 173-186. (1981) Zbl0538.46013MR0628453DOI10.1090/S0002-9947-1981-0628453-7
- Holický, P., Kalenda, O., Descriptive properties of spaces of measures, Bull. Pol. Acad. Sci., Math. 47 (1999), 37-51. (1999) Zbl0929.54026MR1685676
- Hustad, O., 10.1007/BF02392118, Acta Math. 132 (1974), 283-313. (1974) Zbl0309.46025MR0388049DOI10.1007/BF02392118
- Jellett, F., 10.1093/qmath/36.1.71, Q. J. Math., Oxf. II. Ser. 36 (1985), 71-73. (1985) Zbl0582.46010MR0780351DOI10.1093/qmath/36.1.71
- Kuratowski, K., Topology. Vol. I, New edition, revised and augmented Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw (1966). (1966) Zbl0158.40901MR0217751
- Lacey, H. E., The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften 208 Springer, New York (1974). (1974) Zbl0285.46024MR0493279
- Lazar, A. J., 10.1215/S0012-7094-72-03901-4, Duke Math. J. 39 (1972), 1-8. (1972) MR0303242DOI10.1215/S0012-7094-72-03901-4
- Lima, A., 10.1007/BF02761429, Isr. J. Math. 24 (1976), 59-72. (1976) Zbl0334.46014MR0425584DOI10.1007/BF02761429
- Lindenstrauss, J., Wulbert, D. E., 10.1016/0022-1236(69)90003-2, J. Funct. Anal. 4 (1969), 332-349. (1969) MR0250033DOI10.1016/0022-1236(69)90003-2
- Ludvík, P., Spurný, J., 10.1093/qmath/hau007, Q. J. Math. 66 (2015), 251-263. (2015) MR3356290DOI10.1093/qmath/hau007
- Ludvík, P., Spurný, J., 10.1215/ijm/1427897169, Ill. J. Math. 58 (2014), 97-112. (2014) MR3331842DOI10.1215/ijm/1427897169
- Ludvík, P., Spurný, J., 10.4064/sm209-1-6, Stud. Math. 209 (2012), 71-99. (2012) MR2914930DOI10.4064/sm209-1-6
- Lukeš, J., Malý, J., Netuka, I., Spurný, J., Integral Representation Theory: Applications to Convexity, Banach Spaces and Potential Theory, De Gruyter Studies in Mathematics 35 Walter de Gruyter, Berlin (2010). (2010) Zbl1216.46003MR2589994
- Lusky, W., 10.4064/sm160-2-1, Stud. Math. 160 (2004), 103-116. (2004) Zbl1054.46009MR2033145DOI10.4064/sm160-2-1
- Olsen, G. H., 10.7146/math.scand.a-11550, Math. Scand. 35 (1975), 237-258. (1975) Zbl0325.46021MR0367626DOI10.7146/math.scand.a-11550
- Rogers, C. A., Jayne, J. E., -analytic sets, Analytic Sets. Lectures delivered at the London Mathematical Society Instructional Conference on Analytic Sets held at University College, University of London, 1978. Academic Press London (1980), 1-181. (1980) MR0608794
- Roy, A. K., 10.1112/jlms/s2-20.3.529, J. Lond. Math. Soc., II. Ser. 20 (1979), 529-540. (1979) Zbl0421.46008MR0561144DOI10.1112/jlms/s2-20.3.529
- Rudin, W., Real and Complex Analysis, McGraw-Hill New York (1987). (1987) Zbl0925.00005MR0924157
- Talagrand, M., 10.7146/math.scand.a-12052, Math. Scand. 54 (1984), 183-188. (1984) Zbl0562.46005MR0757461DOI10.7146/math.scand.a-12052
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.