A characterization of complex L 1 -preduals via a complex barycentric mapping

Petr Petráček; Jiří Spurný

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 1, page 39-49
  • ISSN: 0010-2628

Abstract

top
We provide a complex version of a theorem due to Bednar and Lacey characterizing real L 1 -preduals. Hence we prove a characterization of complex L 1 -preduals via a complex barycentric mapping.

How to cite

top

Petráček, Petr, and Spurný, Jiří. "A characterization of complex $L_1$-preduals via a complex barycentric mapping." Commentationes Mathematicae Universitatis Carolinae 57.1 (2016): 39-49. <http://eudml.org/doc/276753>.

@article{Petráček2016,
abstract = {We provide a complex version of a theorem due to Bednar and Lacey characterizing real $L_1$-preduals. Hence we prove a characterization of complex $L_1$-preduals via a complex barycentric mapping.},
author = {Petráček, Petr, Spurný, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {complex Banach spaces; $L_1$-predual; barycentric mapping},
language = {eng},
number = {1},
pages = {39-49},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A characterization of complex $L_1$-preduals via a complex barycentric mapping},
url = {http://eudml.org/doc/276753},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Petráček, Petr
AU - Spurný, Jiří
TI - A characterization of complex $L_1$-preduals via a complex barycentric mapping
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 1
SP - 39
EP - 49
AB - We provide a complex version of a theorem due to Bednar and Lacey characterizing real $L_1$-preduals. Hence we prove a characterization of complex $L_1$-preduals via a complex barycentric mapping.
LA - eng
KW - complex Banach spaces; $L_1$-predual; barycentric mapping
UR - http://eudml.org/doc/276753
ER -

References

top
  1. Alfsen E.M., Compact Convex Sets and Boundary Integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer, New York, 1971. Zbl0209.42601MR0445271
  2. Bednar J., Lacey H., 10.2140/pjm.1972.41.13, Pacific J. Math. 41 (1972), no. 1, 13–24. MR0308747DOI10.2140/pjm.1972.41.13
  3. Effros E.G., On a class of complex Banach spaces, Illinois J. Math. 18 (1974), 48–59. MR0328548
  4. Ellis A.J., Rao T.S.S.R.K., Roy A.K., Uttersrud U., 10.1090/S0002-9947-1981-0628453-7, Trans. Amer. Math. Soc. 268 (1981), no. 1, 173–186. MR0628453DOI10.1090/S0002-9947-1981-0628453-7
  5. Fabian M., Habala P., Hájek P., Montesinos V., Zizler V., Banach Space Theory, The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. Zbl1229.46001MR2766381
  6. Hustad O., 10.1007/BF02392118, Acta Math. 132 (1974), no. 1, 283–313. MR0388049DOI10.1007/BF02392118
  7. Krause U., 10.1007/BF01350856, Math. Ann. 184 (1970), no. 4, 275–296. MR1513280DOI10.1007/BF01350856
  8. Lacey H.E., The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften, 208, Springer, New York, 1974. Zbl0285.46024MR0493279
  9. Lima A., 10.1007/BF02761429, Israel J. Math. 24 (1976), no. 1, 59–72. MR0425584DOI10.1007/BF02761429
  10. Ludvík P., Spurný J., 10.1007/s10587-015-0201-6, Czechoslovak Math. J. 65(140) (2015), no. 3, 659–676. MR3407598DOI10.1007/s10587-015-0201-6
  11. Ludvík P., Spurný J., Baire classes of L 1 -preduals and C * -algebras, Complex Banach spaces whose duals are -spaces, Illinois J. Math. 58 (2014), no. 1, 97–112. MR3331842
  12. Ludvík P., Spurný J., 10.1093/qmath/hau007, Q.J. Math. 66 (2015), no. 1, 251–263. DOI10.1093/qmath/hau007
  13. Ludvík P., Spurný J., 10.4064/sm209-1-6, Studia Math. 209 (2012), no. 1, 71–99. MR2914930DOI10.4064/sm209-1-6
  14. Lukeš J., Malý J., Netuka I., Spurný J., Integral Representation Theory, Applications to Convexity, Banach Spaces and Potential Theory, de Gruyter Studies in Mathematics, 35, Walter de Gruyter & Co., Berlin, 2010. MR2589994
  15. Lusky W., 10.4064/sm160-2-1, Studia Math. 160 (2004), no. 2, 103–116. MR2033145DOI10.4064/sm160-2-1
  16. Olsen G.H., On the classification of complex Lindenstrauss spaces, Mathematica Scand. 35 (1974), 237–258. MR0367626
  17. Roy A.K., 10.1112/jlms/s2-20.3.529, J. London Math. Soc. (2) 20 (1979), no. 3, 529–540. MR0561144DOI10.1112/jlms/s2-20.3.529
  18. Spurný J., 10.1007/s10474-010-9223-6, Acta Math. Hungar. 129 (2010), no. (1-2), 47–69. MR2725834DOI10.1007/s10474-010-9223-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.