Two ideals connected with strong right upper porosity at a point
Viktoriia Bilet; Oleksiy Dovgoshey; Jürgen Prestin
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 713-737
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBilet, Viktoriia, Dovgoshey, Oleksiy, and Prestin, Jürgen. "Two ideals connected with strong right upper porosity at a point." Czechoslovak Mathematical Journal 65.3 (2015): 713-737. <http://eudml.org/doc/271821>.
@article{Bilet2015,
abstract = {Let $\rm SP$ be the set of upper strongly porous at $0$ subsets of $\mathbb \{R\}^\{+\}$ and let $\hat\{I\}(\rm SP)$ be the intersection of maximal ideals $I\subseteq \rm SP$. Some characteristic properties of sets $E\in \hat\{I\}(\rm SP)$ are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at $0$ subsets of $\mathbb \{R\}^\{+\}$ is a proper subideal of $\hat\{I\}(\rm SP).$ Earlier, completely strongly porous sets and some of their properties were studied in the paper V. Bilet, O. Dovgoshey (2013/2014).},
author = {Bilet, Viktoriia, Dovgoshey, Oleksiy, Prestin, Jürgen},
journal = {Czechoslovak Mathematical Journal},
keywords = {one-side porosity; local strong upper porosity; completely strongly porous set; ideal},
language = {eng},
number = {3},
pages = {713-737},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two ideals connected with strong right upper porosity at a point},
url = {http://eudml.org/doc/271821},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Bilet, Viktoriia
AU - Dovgoshey, Oleksiy
AU - Prestin, Jürgen
TI - Two ideals connected with strong right upper porosity at a point
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 713
EP - 737
AB - Let $\rm SP$ be the set of upper strongly porous at $0$ subsets of $\mathbb {R}^{+}$ and let $\hat{I}(\rm SP)$ be the intersection of maximal ideals $I\subseteq \rm SP$. Some characteristic properties of sets $E\in \hat{I}(\rm SP)$ are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at $0$ subsets of $\mathbb {R}^{+}$ is a proper subideal of $\hat{I}(\rm SP).$ Earlier, completely strongly porous sets and some of their properties were studied in the paper V. Bilet, O. Dovgoshey (2013/2014).
LA - eng
KW - one-side porosity; local strong upper porosity; completely strongly porous set; ideal
UR - http://eudml.org/doc/271821
ER -
References
top- Bilet, V. V., Dovgoshey, O. A., Investigations of strong right upper porosity at a point, Real Anal. Exch. 39 (2013/14), 175-206. (2013) MR3261905
- Chinčin, A., Recherches sur la structure des fonctions mesurables, Russian, in French Moscou, Rec. Math. 31 (1923), 265-285, 377-433. (1923)
- Denjoy, A., Leçons sur le calcul des coefficients d'une série trigonométrique. Tome II. Métrique et topologie d'ensembles parfaits et de fonctions, French Gauthier-Villars, Paris (1941). (1941) Zbl0063.01081
- Denjoy, A., Sur une propriété de séries trigonométriques, French Amst. Ak. Versl. 29 (1920), 628-639. (1920)
- Dolženko, E. P., Boundary properties of arbitrary functions, Math. USSR (1968), 1-12 translation from Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14 Russian. (1967) MR0217297
- Dovgoshey, O., Riihentaus, J., 10.1017/S0017089512000602, Glasg. Math. J. 55 (2013), 349-368. (2013) Zbl1271.31008MR3040867DOI10.1017/S0017089512000602
- Foran, J., Humke, P. D., 10.2307/44151530, Real Anal. Exch. 6 (1980/81), 114-119. (1980) MR0606545DOI10.2307/44151530
- Humke, P. D., Vessey, T., 10.2307/44151592, Real Anal. Exch. 8 (1982/83), 262-271. (1982) MR0694514DOI10.2307/44151592
- Karp, L., Kilpeläinen, T., Petrosyan, A., Shahgholian, H., 10.1006/jdeq.1999.3754, J. Differ. Equations 164 (2000), 110-117. (2000) Zbl0956.35054MR1761419DOI10.1006/jdeq.1999.3754
- Kechris, A. S., 10.1007/BF02772948, Isr. J. Math. 73 (1991), 189-198. (1991) MR1135211DOI10.1007/BF02772948
- Kechris, A. S., Louveau, A., Woodin, W. H., The structure of -ideals of compact sets, Trans. Am. Math. Soc. 301 (1987), 263-288. (1987) Zbl0633.03043MR0879573
- Przytycki, F., Rohde, S., Porosity of Collet-Eckmann Julia sets, Fundam. Math. 155 (1998), 189-199. (1998) Zbl0908.58054MR1606527
- Repický, M., 10.2307/44152006, Real Anal. Exch. 15 (1989/90), 282-298. (1989) MR1042544DOI10.2307/44152006
- Semenova, O. L., Florinskii, A. A., 10.1007/BF02672903, J. Math. Sci., New York 102 (2000), 4508-4522 translation from Probl. Mat. Anal. Russian 20 (2000), 221-242. (2000) MR1807069DOI10.1007/BF02672903
- Thomson, B. S., 10.1007/BFb0074380, Lecture Notes in Mathematics 1170 Springer, Berlin (1985). (1985) Zbl0581.26001MR0818744DOI10.1007/BFb0074380
- Tkadlec, J., 10.2307/44153562, Real Anal. Exch. 9 (1983/84), 473-482. (1983) MR0766073DOI10.2307/44153562
- Väisälä, J., 10.2307/2000511, Trans. Am. Math. Soc. 299 (1987), 525-533. (1987) Zbl0617.30025MR0869219DOI10.2307/2000511
- Zajíček, L., 10.1155/AAA.2005.509, Abstr. Appl. Anal. 2005 (2005), 509-534. (2005) MR2201041DOI10.1155/AAA.2005.509
- Zajíček, L., 10.2307/44151885, Real Anal. Exch. 13 (1987/88), 314-350. (1987) Zbl0666.26003MR0943561DOI10.2307/44151885
- Zajíček, L., 10.4064/fm-83-3-197-217, Fundam. Math. 83 (1973/74), 197-217. (1973) MR0338294DOI10.4064/fm-83-3-197-217
- Zajíček, L., Zelený, M., On the complexity of some -ideals of --porous sets, Commentat. Math. Univ. Carol. 44 (2003), 531-554. (2003) Zbl1099.54029MR2025819
- Zelený, M., Pelant, J., The structure of the -ideal of -porous sets, Commentat. Math. Univ. Carol. 45 (2004), 37-72. (2004) Zbl1101.28001MR2076859
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.