Two ideals connected with strong right upper porosity at a point

Viktoriia Bilet; Oleksiy Dovgoshey; Jürgen Prestin

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 3, page 713-737
  • ISSN: 0011-4642

Abstract

top
Let SP be the set of upper strongly porous at 0 subsets of + and let I ^ ( SP ) be the intersection of maximal ideals I SP . Some characteristic properties of sets E I ^ ( SP ) are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at 0 subsets of + is a proper subideal of I ^ ( SP ) . Earlier, completely strongly porous sets and some of their properties were studied in the paper V. Bilet, O. Dovgoshey (2013/2014).

How to cite

top

Bilet, Viktoriia, Dovgoshey, Oleksiy, and Prestin, Jürgen. "Two ideals connected with strong right upper porosity at a point." Czechoslovak Mathematical Journal 65.3 (2015): 713-737. <http://eudml.org/doc/271821>.

@article{Bilet2015,
abstract = {Let $\rm SP$ be the set of upper strongly porous at $0$ subsets of $\mathbb \{R\}^\{+\}$ and let $\hat\{I\}(\rm SP)$ be the intersection of maximal ideals $I\subseteq \rm SP$. Some characteristic properties of sets $E\in \hat\{I\}(\rm SP)$ are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at $0$ subsets of $\mathbb \{R\}^\{+\}$ is a proper subideal of $\hat\{I\}(\rm SP).$ Earlier, completely strongly porous sets and some of their properties were studied in the paper V. Bilet, O. Dovgoshey (2013/2014).},
author = {Bilet, Viktoriia, Dovgoshey, Oleksiy, Prestin, Jürgen},
journal = {Czechoslovak Mathematical Journal},
keywords = {one-side porosity; local strong upper porosity; completely strongly porous set; ideal},
language = {eng},
number = {3},
pages = {713-737},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two ideals connected with strong right upper porosity at a point},
url = {http://eudml.org/doc/271821},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Bilet, Viktoriia
AU - Dovgoshey, Oleksiy
AU - Prestin, Jürgen
TI - Two ideals connected with strong right upper porosity at a point
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 713
EP - 737
AB - Let $\rm SP$ be the set of upper strongly porous at $0$ subsets of $\mathbb {R}^{+}$ and let $\hat{I}(\rm SP)$ be the intersection of maximal ideals $I\subseteq \rm SP$. Some characteristic properties of sets $E\in \hat{I}(\rm SP)$ are obtained. We also find a characteristic property of the intersection of all maximal ideals contained in a given set which is closed under subsets. It is shown that the ideal generated by the so-called completely strongly porous at $0$ subsets of $\mathbb {R}^{+}$ is a proper subideal of $\hat{I}(\rm SP).$ Earlier, completely strongly porous sets and some of their properties were studied in the paper V. Bilet, O. Dovgoshey (2013/2014).
LA - eng
KW - one-side porosity; local strong upper porosity; completely strongly porous set; ideal
UR - http://eudml.org/doc/271821
ER -

References

top
  1. Bilet, V. V., Dovgoshey, O. A., Investigations of strong right upper porosity at a point, Real Anal. Exch. 39 (2013/14), 175-206. (2013) MR3261905
  2. Chinčin, A., Recherches sur la structure des fonctions mesurables, Russian, in French Moscou, Rec. Math. 31 (1923), 265-285, 377-433. (1923) 
  3. Denjoy, A., Leçons sur le calcul des coefficients d'une série trigonométrique. Tome II. Métrique et topologie d'ensembles parfaits et de fonctions, French Gauthier-Villars, Paris (1941). (1941) Zbl0063.01081
  4. Denjoy, A., Sur une propriété de séries trigonométriques, French Amst. Ak. Versl. 29 (1920), 628-639. (1920) 
  5. Dolženko, E. P., Boundary properties of arbitrary functions, Math. USSR (1968), 1-12 translation from Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14 Russian. (1967) MR0217297
  6. Dovgoshey, O., Riihentaus, J., 10.1017/S0017089512000602, Glasg. Math. J. 55 (2013), 349-368. (2013) Zbl1271.31008MR3040867DOI10.1017/S0017089512000602
  7. Foran, J., Humke, P. D., 10.2307/44151530, Real Anal. Exch. 6 (1980/81), 114-119. (1980) MR0606545DOI10.2307/44151530
  8. Humke, P. D., Vessey, T., 10.2307/44151592, Real Anal. Exch. 8 (1982/83), 262-271. (1982) MR0694514DOI10.2307/44151592
  9. Karp, L., Kilpeläinen, T., Petrosyan, A., Shahgholian, H., 10.1006/jdeq.1999.3754, J. Differ. Equations 164 (2000), 110-117. (2000) Zbl0956.35054MR1761419DOI10.1006/jdeq.1999.3754
  10. Kechris, A. S., 10.1007/BF02772948, Isr. J. Math. 73 (1991), 189-198. (1991) MR1135211DOI10.1007/BF02772948
  11. Kechris, A. S., Louveau, A., Woodin, W. H., The structure of σ -ideals of compact sets, Trans. Am. Math. Soc. 301 (1987), 263-288. (1987) Zbl0633.03043MR0879573
  12. Przytycki, F., Rohde, S., Porosity of Collet-Eckmann Julia sets, Fundam. Math. 155 (1998), 189-199. (1998) Zbl0908.58054MR1606527
  13. Repický, M., 10.2307/44152006, Real Anal. Exch. 15 (1989/90), 282-298. (1989) MR1042544DOI10.2307/44152006
  14. Semenova, O. L., Florinskii, A. A., 10.1007/BF02672903, J. Math. Sci., New York 102 (2000), 4508-4522 translation from Probl. Mat. Anal. Russian 20 (2000), 221-242. (2000) MR1807069DOI10.1007/BF02672903
  15. Thomson, B. S., 10.1007/BFb0074380, Lecture Notes in Mathematics 1170 Springer, Berlin (1985). (1985) Zbl0581.26001MR0818744DOI10.1007/BFb0074380
  16. Tkadlec, J., 10.2307/44153562, Real Anal. Exch. 9 (1983/84), 473-482. (1983) MR0766073DOI10.2307/44153562
  17. Väisälä, J., 10.2307/2000511, Trans. Am. Math. Soc. 299 (1987), 525-533. (1987) Zbl0617.30025MR0869219DOI10.2307/2000511
  18. Zajíček, L., 10.1155/AAA.2005.509, Abstr. Appl. Anal. 2005 (2005), 509-534. (2005) MR2201041DOI10.1155/AAA.2005.509
  19. Zajíček, L., 10.2307/44151885, Real Anal. Exch. 13 (1987/88), 314-350. (1987) Zbl0666.26003MR0943561DOI10.2307/44151885
  20. Zajíček, L., 10.4064/fm-83-3-197-217, Fundam. Math. 83 (1973/74), 197-217. (1973) MR0338294DOI10.4064/fm-83-3-197-217
  21. Zajíček, L., Zelený, M., On the complexity of some σ -ideals of σ - P -porous sets, Commentat. Math. Univ. Carol. 44 (2003), 531-554. (2003) Zbl1099.54029MR2025819
  22. Zelený, M., Pelant, J., The structure of the σ -ideal of σ -porous sets, Commentat. Math. Univ. Carol. 45 (2004), 37-72. (2004) Zbl1101.28001MR2076859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.