Porosity of Collet–Eckmann Julia sets

Feliks Przytycki; Steffen Rohde

Fundamenta Mathematicae (1998)

  • Volume: 155, Issue: 2, page 189-199
  • ISSN: 0016-2736

Abstract

top
We prove that the Julia set of a rational map of the Riemann sphere satisfying the Collet-Eckmann condition and having no parabolic periodic point is mean porous, if it is not the whole sphere. It follows that the Minkowski dimension of the Julia set is less than 2.

How to cite

top

Przytycki, Feliks, and Rohde, Steffen. "Porosity of Collet–Eckmann Julia sets." Fundamenta Mathematicae 155.2 (1998): 189-199. <http://eudml.org/doc/212251>.

@article{Przytycki1998,
abstract = {We prove that the Julia set of a rational map of the Riemann sphere satisfying the Collet-Eckmann condition and having no parabolic periodic point is mean porous, if it is not the whole sphere. It follows that the Minkowski dimension of the Julia set is less than 2.},
author = {Przytycki, Feliks, Rohde, Steffen},
journal = {Fundamenta Mathematicae},
keywords = {Hölder domain; shrinking neighborhoods; Collet-Eckmann condition; Julia set; rational map; box dimension; porosity},
language = {eng},
number = {2},
pages = {189-199},
title = {Porosity of Collet–Eckmann Julia sets},
url = {http://eudml.org/doc/212251},
volume = {155},
year = {1998},
}

TY - JOUR
AU - Przytycki, Feliks
AU - Rohde, Steffen
TI - Porosity of Collet–Eckmann Julia sets
JO - Fundamenta Mathematicae
PY - 1998
VL - 155
IS - 2
SP - 189
EP - 199
AB - We prove that the Julia set of a rational map of the Riemann sphere satisfying the Collet-Eckmann condition and having no parabolic periodic point is mean porous, if it is not the whole sphere. It follows that the Minkowski dimension of the Julia set is less than 2.
LA - eng
KW - Hölder domain; shrinking neighborhoods; Collet-Eckmann condition; Julia set; rational map; box dimension; porosity
UR - http://eudml.org/doc/212251
ER -

References

top
  1. [BC] M. Benedicks and L. Carleson, The dynamics of the Hénon maps, Ann. of Math. 133 (1991), 73-169. Zbl0724.58042
  2. [CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems 3 (1983), 13-46. Zbl0532.28014
  3. [CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30. 
  4. [DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266. Zbl0852.46024
  5. [DU] M. Denker and M. Urbański, On Hausdorff measures on Julia sets of subexpanding rational maps, Israel J. Math. 76 (1992), 193-214. Zbl0763.30008
  6. [G] J. Graczyk, Hyperbolic subsets, conformal measures and Hausdorff dimension of Julia sets, preprint, 1995. 
  7. [GS] J. Graczyk and S. Smirnov, Collet, Eckmann, & Hölder, Invent. Math., to appear. 
  8. [JM] P. Jones and N. Makarov, Density properties of harmonic measure, Ann. of Math. 142 (1995), 427-455. Zbl0842.31001
  9. [KR] P. Koskela and S. Rohde, Hausdorff dimension and mean porosity, Math. Ann., to appear. Zbl0890.30013
  10. [LP] G. Levin and F. Przytycki, When do two rational functions have the same Julia set?, Proc. Amer. Math Soc. 125 (1997), 2179-2190. Zbl0870.58085
  11. [M] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-12. Zbl0781.30023
  12. [McM] C. McMullen, Self-similarity of Siegel discs and Hausdorff dimension of Julia sets, preprint, 1995. 
  13. [NPV] F. Nazarov, I. Popovici and A. Volberg, Domains with quasi-hyperbolic boundary condition, domains with Greens boundary condition, and estimates of Hausdorff dimension of their boundary, preprint, 1995. 
  14. [NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous, Ergodic Theory Dynam. Systems 9 (1989), 379-388. Zbl0664.58014
  15. [P] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. Zbl0762.30001
  16. [P1] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures, Trans. Amer. Math. Soc., to appear. Zbl0892.58063
  17. [P2] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: Internat. Conf. on Dynamical Systems, Montevideo 1995 - a Tribute to Ricardo Mañ (F. Ledrappier, J. Lewowicz and S. Newhouse, eds.), Pitman Res. Notes Math. 362, Longman, 1996, 167-181. 
  18. [PUZ] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, II, Studia Math. 97 (1991), 189-225. Zbl0732.58022
  19. [SS] W. Smith and D. Stegenga, Exponential integrability of the quasihyperbolic metric in Hölder domains, Ann. Acad. Sci. Fenn. 16 (1991), 345-360. Zbl0725.46024
  20. [T] M. Tsujii, Positive Lyapunov exponents in families of one dimensional dynamical systems, Invent. Math. 111 (1993), 113-137. Zbl0787.58029
  21. [U] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. Zbl0807.58025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.