Porosity of Collet–Eckmann Julia sets
Feliks Przytycki; Steffen Rohde
Fundamenta Mathematicae (1998)
- Volume: 155, Issue: 2, page 189-199
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [BC] M. Benedicks and L. Carleson, The dynamics of the Hénon maps, Ann. of Math. 133 (1991), 73-169. Zbl0724.58042
- [CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems 3 (1983), 13-46. Zbl0532.28014
- [CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30.
- [DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266. Zbl0852.46024
- [DU] M. Denker and M. Urbański, On Hausdorff measures on Julia sets of subexpanding rational maps, Israel J. Math. 76 (1992), 193-214. Zbl0763.30008
- [G] J. Graczyk, Hyperbolic subsets, conformal measures and Hausdorff dimension of Julia sets, preprint, 1995.
- [GS] J. Graczyk and S. Smirnov, Collet, Eckmann, & Hölder, Invent. Math., to appear.
- [JM] P. Jones and N. Makarov, Density properties of harmonic measure, Ann. of Math. 142 (1995), 427-455. Zbl0842.31001
- [KR] P. Koskela and S. Rohde, Hausdorff dimension and mean porosity, Math. Ann., to appear. Zbl0890.30013
- [LP] G. Levin and F. Przytycki, When do two rational functions have the same Julia set?, Proc. Amer. Math Soc. 125 (1997), 2179-2190. Zbl0870.58085
- [M] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-12. Zbl0781.30023
- [McM] C. McMullen, Self-similarity of Siegel discs and Hausdorff dimension of Julia sets, preprint, 1995.
- [NPV] F. Nazarov, I. Popovici and A. Volberg, Domains with quasi-hyperbolic boundary condition, domains with Greens boundary condition, and estimates of Hausdorff dimension of their boundary, preprint, 1995.
- [NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous, Ergodic Theory Dynam. Systems 9 (1989), 379-388. Zbl0664.58014
- [P] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992. Zbl0762.30001
- [P1] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures, Trans. Amer. Math. Soc., to appear. Zbl0892.58063
- [P2] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: Internat. Conf. on Dynamical Systems, Montevideo 1995 - a Tribute to Ricardo Mañ (F. Ledrappier, J. Lewowicz and S. Newhouse, eds.), Pitman Res. Notes Math. 362, Longman, 1996, 167-181.
- [PUZ] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, II, Studia Math. 97 (1991), 189-225. Zbl0732.58022
- [SS] W. Smith and D. Stegenga, Exponential integrability of the quasihyperbolic metric in Hölder domains, Ann. Acad. Sci. Fenn. 16 (1991), 345-360. Zbl0725.46024
- [T] M. Tsujii, Positive Lyapunov exponents in families of one dimensional dynamical systems, Invent. Math. 111 (1993), 113-137. Zbl0787.58029
- [U] M. Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. Zbl0807.58025