Log-optimal investment in the long run with proportional transaction costs when using shadow prices

Petr Dostál; Jana Klůjová

Kybernetika (2015)

  • Volume: 51, Issue: 4, page 588-628
  • ISSN: 0023-5954

Abstract

top
We consider a non-consuming agent interested in the maximization of the long-run growth rate of a wealth process investing either in a money market and in one risky asset following a geometric Brownian motion or in futures following an arithmetic Brownian motion. The agent faces proportional transaction costs, and similarly as in [17] where the case of stock trading is considered, we show how the log-optimal optimal policies in the long run can be derived when using the technical tool of shadow prices. We also provide a brief link between technical tools used in this paper and the ones used in [14,15,17].

How to cite

top

Dostál, Petr, and Klůjová, Jana. "Log-optimal investment in the long run with proportional transaction costs when using shadow prices." Kybernetika 51.4 (2015): 588-628. <http://eudml.org/doc/271825>.

@article{Dostál2015,
abstract = {We consider a non-consuming agent interested in the maximization of the long-run growth rate of a wealth process investing either in a money market and in one risky asset following a geometric Brownian motion or in futures following an arithmetic Brownian motion. The agent faces proportional transaction costs, and similarly as in [17] where the case of stock trading is considered, we show how the log-optimal optimal policies in the long run can be derived when using the technical tool of shadow prices. We also provide a brief link between technical tools used in this paper and the ones used in [14,15,17].},
author = {Dostál, Petr, Klůjová, Jana},
journal = {Kybernetika},
keywords = {proportional transaction costs; logarithmic utility; shadow prices},
language = {eng},
number = {4},
pages = {588-628},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Log-optimal investment in the long run with proportional transaction costs when using shadow prices},
url = {http://eudml.org/doc/271825},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Dostál, Petr
AU - Klůjová, Jana
TI - Log-optimal investment in the long run with proportional transaction costs when using shadow prices
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 4
SP - 588
EP - 628
AB - We consider a non-consuming agent interested in the maximization of the long-run growth rate of a wealth process investing either in a money market and in one risky asset following a geometric Brownian motion or in futures following an arithmetic Brownian motion. The agent faces proportional transaction costs, and similarly as in [17] where the case of stock trading is considered, we show how the log-optimal optimal policies in the long run can be derived when using the technical tool of shadow prices. We also provide a brief link between technical tools used in this paper and the ones used in [14,15,17].
LA - eng
KW - proportional transaction costs; logarithmic utility; shadow prices
UR - http://eudml.org/doc/271825
ER -

References

top
  1. Algoet, P. H., Cover, T. M., 10.1214/aop/1176991793, Ann. Probab. 16 (1988), 2, 876-898. MR0929084DOI10.1214/aop/1176991793
  2. Akian, M., Menaldi, J. L., Sulem, A., 10.1137/s0363012993247159, SIAM J. Control Optim. 34 (1996), 1, 329-364. Zbl1035.91505MR1372917DOI10.1137/s0363012993247159
  3. Akian, M., Sulem, A., Taksar, M. I., 10.1111/1467-9965.00111, Math. Finance 11 (2001), 2, 153-188. Zbl1055.91016MR1822775DOI10.1111/1467-9965.00111
  4. Bayer, Ch., Veliyev, B., Utility Maximization in a Binomial Model with Transaction Costs: a Duality Approach Based on the Shadow Price Process., arXiv: 1209.5175. MR3224442
  5. Benedetti, G., Campi, L., Kallsen, J., Muhle-Karbe, J., 10.1007/s00780-012-0201-4, Finance Stoch. 17 (2013), 801-818. Zbl1280.91070MR3105934DOI10.1007/s00780-012-0201-4
  6. Choi, J. H., Sirbu, M., Zitkovix, G., 10.1137/120881373, SIAM J. Control Optim. 51 (2013), 6, 4414-4449. MR3141745DOI10.1137/120881373
  7. Czichowsky, Ch., Muhle-Karbe, J., Schachermayer, W., 10.1137/130925864, SIAM J. Financial Math. 5 (2014), 1, 258-277. Zbl1318.91179MR3194656DOI10.1137/130925864
  8. Bell, R. M., Cover, T. M., 10.1287/moor.5.2.161, Math. Oper. Res. 5 (1980), 2, 161-166. Zbl0442.90120MR0571810DOI10.1287/moor.5.2.161
  9. Bell, R., Cover, T. M., 10.1287/mnsc.34.6.724, Management Sci. 34 (1998), 6, 724-733. Zbl0649.90014MR0943277DOI10.1287/mnsc.34.6.724
  10. Breiman, L., Optimal gambling system for flavorable games., In: Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. 1 (J. Neyman, ed.), Univ. of Calif. Press, Berkeley 1961, pp. 65-78. MR0135630
  11. Browne, S., Whitt, W., 10.2307/1428168, Adv. in Appl. Probab. 28 (1996), 4, 1145-1176. Zbl0867.90010MR1418250DOI10.2307/1428168
  12. Davis, M., Norman, A., 10.1287/moor.15.4.676, Math. Oper. Res. 15 (1990), 4, 676-713. Zbl0717.90007MR1080472DOI10.1287/moor.15.4.676
  13. Dostál, P., Almost optimal trading strategies for small transaction costs and a HARA utility function., J. Comb. Inf. Syst. Sci. 38 (2010), 257-291. 
  14. Dostál, P., Futures trading with transaction costs., In: Proc. ALGORITMY 2009. (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Slovak Univ. of Tech. in Bratislava, Publishing House of STU, Bratislava 2009, pp. 419-428. Zbl1184.91199
  15. Dostál, P., 10.1080/14697680802039873, Quant. Finance 9 (2009), 2, 231-242. MR2512992DOI10.1080/14697680802039873
  16. Gerhold, S., Muhle-Karbe, J., Schachermayer, W., 10.1080/17442508.2011.619699, Stochastics 84 (2012), 5-6, 625-641. Zbl1276.91093MR2995515DOI10.1080/17442508.2011.619699
  17. Gerhold, S., Muhle-Karbe, J., Schachermayer, W., 10.1007/s00780-011-0165-9, Finance Stoch. 17 (2013), 2, 325-354. Zbl1319.91142MR3038594DOI10.1007/s00780-011-0165-9
  18. Goll, T., Kallsen, J., 10.1016/s0304-4149(00)00011-9, Stochastic Process. Appl. 89 (2000), 1, 31-48. Zbl1048.91064MR1775225DOI10.1016/s0304-4149(00)00011-9
  19. Herczegh, A., Prokaj, V., Shadow Price in the Power Utility Case., arXiv: 1112.4385. MR3375886
  20. Janeček, K., Optimal Growth in Gambling and Investing., MSc Thesis, Charles University Prague 1999. 
  21. Janeček, K., Shreve, S. E., 10.1007/s00780-003-0113-4, Finance Stoch. 8 (2004), 2, 181-206. MR2048827DOI10.1007/s00780-003-0113-4
  22. Janeček, K., Shreve, S. E., Futures trading with transaction costs., Illinois J. Math. 54 (2010), 4, 1239-1284. Zbl1276.91094MR2981847
  23. Kallenberg, O., Foundations of Modern Probability., Springer Verlag, Heidelberg 1997. Zbl0996.60001MR1464694
  24. Kallsen, J., Muhle-Karbe, J., 10.1214/09-aap648, Ann. Appl. Probab. 20 (2010), 4, 1341-1358. MR2676941DOI10.1214/09-aap648
  25. Kallsen, J., Muhle-Karbe, J., 10.1007/s00186-011-0345-6, Math. Methods Oper. Res. 73 (2011), 2, 251-262. Zbl1217.91170MR2776563DOI10.1007/s00186-011-0345-6
  26. Kallsen, J., Muhle-Karbe, J., The General Structure of Optimal Investment and Consumption with Small Transaction Costs., arXiv: 1303.3148. 
  27. Kelly, J. L., 10.1002/j.1538-7305.1956.tb03809.x, Bell Sys. Tech. J. 35 (1956), 4, 917-926. MR0090494DOI10.1002/j.1538-7305.1956.tb03809.x
  28. Magill, M. J. P., Constantinides, G. M., 10.1016/0022-0531(76)90018-1, J. Econom. Theory 13 (1976), 2, 245-263. MR0469196DOI10.1016/0022-0531(76)90018-1
  29. Merton, R. C., 10.1016/0022-0531(71)90038-X, J. Econom. Theory 3 (1971), 4, 373-413. Erratum 6 (1973), 2, 213-214, Zbl1011.91502MR0456373DOI10.1016/0022-0531(71)90038-X
  30. Morton, A. J., Pliska, S., 10.1111/j.1467-9965.1995.tb00071.x, Math. Finance 5 (1995), 4, 337-356. Zbl0866.90020DOI10.1111/j.1467-9965.1995.tb00071.x
  31. Revuz, D., Yor, M., 10.1007/978-3-662-06400-9, Springer Verlag, Heidelberg, Berlin, New York 1999. Zbl1087.60040MR1725357DOI10.1007/978-3-662-06400-9
  32. Rokhlin, D. B., 10.1007/s00780-013-0206-7, Finance Stoch. 17 (2013), 4, 819-838. Zbl1279.91150MR3105935DOI10.1007/s00780-013-0206-7
  33. Rotando, L. M., Thorp, E. O., 10.2307/2324484, Amer. Math. Monthly 99 (1992), 10, 922-931. Zbl0768.90105MR1190557DOI10.2307/2324484
  34. Samuelson, P. A., 10.1073/pnas.68.10.2493, Proc. Natl. Acad. Sci. 68 (1971), 10, 2493-2496. MR0295739DOI10.1073/pnas.68.10.2493
  35. Sass, J., Schäl, M., 10.1007/s10203-012-0132-8, Decis. Econ. Finance 37 (2014), 2, 195-234. MR3260886DOI10.1007/s10203-012-0132-8
  36. Shreve, S. E., Soner, H. M., 10.1214/aoap/1177004966, Ann. Appl. Probab. 4 (1994), 3, 609-692. Zbl0813.60051MR1284980DOI10.1214/aoap/1177004966
  37. Skorokhod, A., 10.1137/1106035, Theory Probab. Appl. 6 (1961), 3, 264-274. Zbl0201.49302DOI10.1137/1106035
  38. Skorokhod, A., 10.1137/1107002, Theory Probab. Appl. 7 (1962), 1, 3-23. Zbl0201.49302DOI10.1137/1107002
  39. Thorp, E., 10.1016/b978-0-12-780850-5.50051-4, In: Stochastic Optimization Models in Finance (W. T. Ziemba and R. G. Vickson, eds.), Acad. Press, Bew York 1975, pp. 599-619. DOI10.1016/b978-0-12-780850-5.50051-4
  40. Thorp, E., The Kelly criterion in blackjack, sports betting and the stock market., In: Finding the Edge: Mathematical Analysis of Casino Games (O. Vancura, J. A. Cornelius and W. R. Eadington, eds.), Institute for the Study of Gambling and Commercial Gaming, Reno 2000, pp. 163-213. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.