Almost log-optimal trading strategies for small transaction costs in model with stochastic coefficients

Petr Dostál

Kybernetika (2022)

  • Volume: 58, Issue: 6, page 903-959
  • ISSN: 0023-5954

Abstract

top
We consider a non-consuming agent investing in a stock and a money market interested in the portfolio market price far in the future. We derive a strategy which is almost log-optimal in the long run in the presence of small proportional transaction costs for the case when the rate of return and the volatility of the stock market price are bounded It o processes with bounded coefficients and when the volatility is bounded away from zero.

How to cite

top

Dostál, Petr. "Almost log-optimal trading strategies for small transaction costs in model with stochastic coefficients." Kybernetika 58.6 (2022): 903-959. <http://eudml.org/doc/299423>.

@article{Dostál2022,
abstract = {We consider a non-consuming agent investing in a stock and a money market interested in the portfolio market price far in the future. We derive a strategy which is almost log-optimal in the long run in the presence of small proportional transaction costs for the case when the rate of return and the volatility of the stock market price are bounded It o processes with bounded coefficients and when the volatility is bounded away from zero.},
author = {Dostál, Petr},
journal = {Kybernetika},
keywords = {small transaction costs; logarithmic utility function; non-constant coefficients},
language = {eng},
number = {6},
pages = {903-959},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Almost log-optimal trading strategies for small transaction costs in model with stochastic coefficients},
url = {http://eudml.org/doc/299423},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Dostál, Petr
TI - Almost log-optimal trading strategies for small transaction costs in model with stochastic coefficients
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 6
SP - 903
EP - 959
AB - We consider a non-consuming agent investing in a stock and a money market interested in the portfolio market price far in the future. We derive a strategy which is almost log-optimal in the long run in the presence of small proportional transaction costs for the case when the rate of return and the volatility of the stock market price are bounded It o processes with bounded coefficients and when the volatility is bounded away from zero.
LA - eng
KW - small transaction costs; logarithmic utility function; non-constant coefficients
UR - http://eudml.org/doc/299423
ER -

References

top
  1. Ahrens, L., On Using Shadow Prices for the Asymptotic Analysis of Portfolio Optimization under Proportional Transaction Costs., PhD. Thesis, Kiel, 2015. 
  2. Akian, M., Menaldi, J. L., Sulem, A., , J. Control Optim. 34 (1996), 1, 329-364. Zbl1035.91505MR1372917DOI
  3. Akian, M., Sulem, A., Taksar, M. I., , Math. Finance 11 (2001), 2, 53-188. MR1822775DOI
  4. Algoet, P. H., Cover, T. M., , Ann. Probab. 16 (1988), 2, 876-898. MR0929084DOI
  5. Bell, R. M., Cover, T. M., , Math. Oper. Res. 5 (1980), 2, 161-166. Zbl0442.90120MR0571810DOI
  6. Bell, R., Cover, T. M., , Management Sci. 34 (1988), 6, 724-733. Zbl0649.90014MR0943277DOI
  7. Bichuch, M., Sircar, R., , SIAM J. Control Optim. 57 (2019), 1, 437-467. MR3904415DOI
  8. Breiman, L., Optimal gambling system for flavorable games., In: Proc. 4-th Berkeley Symposium on Mathematical Statistics and Probability 1 (1961), pp. 65-78. MR0135630
  9. Browne, S., Whitt, W., , Adv. in Appl. Probab. 28 (1996), 4, 1145-1176. Zbl0867.90010MR1418250DOI
  10. Cai, J., Rosenbaum, M., Tankov, P., , Ann. Appl. Probab. 27 (2017), 4, 2455-2514. MR3693531DOI
  11. Constantinides, G. M., , J. Political Economy 94 (1986), 4, 842-862. DOI
  12. Davis, M. H. A., Norman, A. R., , Math. Oper. Res. 15 (1990), 4, 676-713. MR1080472DOI
  13. Dostál, P., Optimal trading strategies with transaction costs paid only for the first stock., Acta Univ. Carolin. Math. Phys. 47 (2006), 2, 43-72. MR2512173
  14. Dostál, P., Almost optimal trading strategies for small transaction costs and a HARA utility function., J. Comb. Inf. Syst. Sci. 35 (2010), 1-2, 257-291. 
  15. Dostál, P., Futures trading with transaction costs., In: Proc. ALGORITMY 2009, (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Slovak University of Technology in Bratislava, Publishing House of STU, Bratislava 2009, pp. 419-428. Zbl1184.91199
  16. Dostál, P., , Quant. Finance 9 (2009), 2, 231-242. MR2512992DOI
  17. Dostál, P., Klůjová, J., , Kybernetika 51 (2015), 4, 588-628. MR3423189DOI
  18. Dupačová, J., Hurt, J., Štěpán, J., Stochastic Modeling in Economics and Finance., Kluwer, Dordrecht 2002. MR2008457
  19. Janeček, K., Optimal Growth in Gambling and Investing., MSc Thesis, Charles University, Prague 1999. 
  20. Janeček, K., Shreve, S. E., , Finance Stoch. 8 (2004), 2, 181-206. MR2048827DOI
  21. Janeček, K., Shreve, S. E., , Illinois J. Math. 54 (2010), 4, 1239-1284. MR2981847DOI
  22. Kallenberg, O., Foundations of Modern Probability., Springer-Verlag, New York - Berlin - Heidelberg 1997. Zbl0996.60001MR1464694
  23. Kallsen, J., Muhle-Karbe, J., , Math. Finance 27 (2017), 3, 659-703. MR3668154DOI
  24. Karatzas, I., Shreve, S. E., Brownian Motion and Stochastic Calculus., Springer-Verlag, New York - Berlin - Heidelberg 1991. MR1121940
  25. Kelly, J. L., , Bell System Techn. J. 35 (1956), 4, 917-926. MR0090494DOI
  26. Magill, M. J. P., Constantinides, G. M., 10.1016/0022-0531(76)90018-1, J. Econom. Theory 13 (1976), 2, 245-263. MR0469196DOI10.1016/0022-0531(76)90018-1
  27. Melnyk, Y., Seifried, F. T., , Math. Finance 28 (2018), 2, 668-711. MR3780971DOI
  28. Merton, R. C., , J. Econom. Theory 3 (1971), 4, 373-413 MR0456373DOI
  29. Morton, A. J., Pliska, S., , Math. Finance 5 (1995), 4, 337-356. Zbl0866.90020DOI
  30. Mulvey, J. M., Sun, Y., Wang, M., Ye, J., , Quant. Finance 20 (2020), 8, 1239-1261. MR4138218DOI
  31. Rotando, L. M., Thorp, E. O., , Amer. Math. Monthly 99 (1992), 10, 922-931. Zbl0768.90105MR1190557DOI
  32. Samuelson, P. A., , Proc. Natl. Acad. Sci. USA 68 (1971), 10, 2493-2496. MR0295739DOI
  33. Shreve, S., Soner, H. M., , Ann. Appl. Probab. 4 (1994), 3, 609-692. Zbl0813.60051MR1284980DOI
  34. Thorp, E. O., , In: Stochastic Optimization Models in Finance, (W. T. Ziemba and R. G. Vickson, eds.), Academic Press, New York 1975, pp. 599-619. DOI
  35. Thorp, E., , In: 10th International Conference on Gambling and Risk Taking, Montreal 1997. DOI
  36. Dostál, P., , Online: DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.