Parabolic equations with rough data

Herbert Koch; Tobias Lamm

Mathematica Bohemica (2015)

  • Volume: 140, Issue: 4, page 457-477
  • ISSN: 0862-7959

Abstract

top
We survey recent work on local well-posedness results for parabolic equations and systems with rough initial data. The design of the function spaces is guided by tools and constructions from harmonic analysis, like maximal functions, square functions and Carleson measures. We construct solutions under virtually optimal scale invariant conditions on the initial data. Applications include BMO initial data for the harmonic map heat flow and the Ricci-DeTurck flow for initial metrics with small local oscillation. The approach is sufficiently flexible to apply to boundary value problems, quasilinear and fully nonlinear equations.

How to cite

top

Koch, Herbert, and Lamm, Tobias. "Parabolic equations with rough data." Mathematica Bohemica 140.4 (2015): 457-477. <http://eudml.org/doc/271834>.

@article{Koch2015,
abstract = {We survey recent work on local well-posedness results for parabolic equations and systems with rough initial data. The design of the function spaces is guided by tools and constructions from harmonic analysis, like maximal functions, square functions and Carleson measures. We construct solutions under virtually optimal scale invariant conditions on the initial data. Applications include BMO initial data for the harmonic map heat flow and the Ricci-DeTurck flow for initial metrics with small local oscillation. The approach is sufficiently flexible to apply to boundary value problems, quasilinear and fully nonlinear equations.},
author = {Koch, Herbert, Lamm, Tobias},
journal = {Mathematica Bohemica},
keywords = {parabolic equation; rough initial data},
language = {eng},
number = {4},
pages = {457-477},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Parabolic equations with rough data},
url = {http://eudml.org/doc/271834},
volume = {140},
year = {2015},
}

TY - JOUR
AU - Koch, Herbert
AU - Lamm, Tobias
TI - Parabolic equations with rough data
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 4
SP - 457
EP - 477
AB - We survey recent work on local well-posedness results for parabolic equations and systems with rough initial data. The design of the function spaces is guided by tools and constructions from harmonic analysis, like maximal functions, square functions and Carleson measures. We construct solutions under virtually optimal scale invariant conditions on the initial data. Applications include BMO initial data for the harmonic map heat flow and the Ricci-DeTurck flow for initial metrics with small local oscillation. The approach is sufficiently flexible to apply to boundary value problems, quasilinear and fully nonlinear equations.
LA - eng
KW - parabolic equation; rough initial data
UR - http://eudml.org/doc/271834
ER -

References

top
  1. Angenent, S. B., 10.1017/S0308210500024598, Proc. R. Soc. Edinb., Sect. A, Math. 115 (1990), 91-107. (1990) Zbl0723.34047MR1059647DOI10.1017/S0308210500024598
  2. Angenent, S. B., Parabolic equations for curves on surfaces. I: Curves with p -integrable curvature, Ann. Math. (2) 132 (1990), 451-483. (1990) Zbl0789.58070MR1078266
  3. Aronson, D. G., Graveleau, J., 10.1017/S095679250000098X, Eur. J. Appl. Math. 4 (1993), 65-81. (1993) Zbl0780.35079MR1208420DOI10.1017/S095679250000098X
  4. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P., The solution of the Kato square root problem for second order elliptic operators on n , Ann. Math. (2) 156 (2002), 633-654. (2002) MR1933726
  5. Cabezas-Rivas, E., Wilking, B., How to produce a Ricci flow via Cheeger-{G}romoll exhaustion, (to appear) in J. Eur. Math. Soc. 
  6. Chen, B.-L., 10.4310/jdg/1246888488, J. Differ. Geom. 82 (2009), 363-382. (2009) Zbl1177.53036MR2520796DOI10.4310/jdg/1246888488
  7. Chen, B.-L., Zhu, X.-P., 10.4310/jdg/1175266184, J. Differ. Geom. 74 (2006), 119-154. (2006) Zbl1104.53032MR2260930DOI10.4310/jdg/1175266184
  8. Dahlberg, B. E. J., Kenig, C. E., 10.4171/RMI/34, Rev. Mat. Iberoam. 2 (1986), 267-305. (1986) Zbl0644.35057MR0908054DOI10.4171/RMI/34
  9. Daskalopoulos, P., Hamilton, R., 10.1090/S0894-0347-98-00277-X, J. Am. Math. Soc. 11 (1998), 899-965. (1998) Zbl0910.35145MR1623198DOI10.1090/S0894-0347-98-00277-X
  10. Daskalopoulos, P., Hamilton, R., Lee, K., 10.1215/S0012-7094-01-10824-7, Duke Math. J. 108 (2001), 295-327. (2001) Zbl1017.35052MR1833393DOI10.1215/S0012-7094-01-10824-7
  11. Denzler, J., Koch, H., McCann, R. J., Higher-order time asymptotics of fast diffusion in Euclidean space: a dynamical systems approach, Mem. Am. Math. Soc. 234 (2015), no. 1101, 81 pages. (2015) Zbl1315.35004MR3307161
  12. Denzler, J., McCann, R. J., 10.1007/s00205-004-0336-3, Arch. Ration. Mech. Anal. 175 (2005), 301-342. (2005) Zbl1083.35074MR2126633DOI10.1007/s00205-004-0336-3
  13. DeTurck, D. M., 10.4310/jdg/1214509286, J. Differ. Geom. 18 (1983), 157-162. (1983) Zbl0517.53044MR0697987DOI10.4310/jdg/1214509286
  14. Giacomelli, L., Gnann, M. V., Knüpfer, H., Otto, F., 10.1016/j.jde.2014.03.010, J. Differ. Equations 257 (2014), 15-81. (2014) Zbl1302.35218MR3197240DOI10.1016/j.jde.2014.03.010
  15. Giacomelli, L., Knüpfer, H., Otto, F., 10.1016/j.jde.2008.06.005, J. Differ. Equations 245 (2008), 1454-1506. (2008) Zbl1159.35039MR2436450DOI10.1016/j.jde.2008.06.005
  16. Jerison, D., Kenig, C. E., 10.1006/jfan.1995.1067, J. Funct. Anal. 130 (1995), 161-219. (1995) Zbl0832.35034MR1331981DOI10.1006/jfan.1995.1067
  17. John, D., 10.1016/j.jde.2015.05.013, J. Differ. Equations 259 (2015), Article ID 7877, 4122-4171. (2015) Zbl1322.35084MR3369273DOI10.1016/j.jde.2015.05.013
  18. Kienzler, C., Flat Fronts and Stability for the Porous Medium Equation, (2014), arxiv:1403.5811[math.AP]. (2014) MR3572559
  19. Koch, H., Lamm, T., 10.4310/AJM.2012.v16.n2.a3, Asian J. Math. 16 (2012), 209-235. (2012) Zbl1252.35159MR2916362DOI10.4310/AJM.2012.v16.n2.a3
  20. Koch, H., Tataru, D., 10.1006/aima.2000.1937, Adv. Math. 157 (2001), 22-35. (2001) Zbl0972.35084MR1808843DOI10.1006/aima.2000.1937
  21. Kotschwar, B. L., 10.4310/CAG.2014.v22.n1.a3, Commun. Anal. Geom. 22 (2014), 149-176. (2014) Zbl1303.53056MR3194377DOI10.4310/CAG.2014.v22.n1.a3
  22. Kotschwar, B. L., 10.1112/blms/bds074, Bull. Lond. Math. Soc. 45 (2013), 153-158. (2013) Zbl1259.53065MR3033963DOI10.1112/blms/bds074
  23. Nadirashvili, N., Tkachev, V., Vlăduţ, S., 10.1016/j.aim.2012.07.005, Adv. Math. 231 (2012), 1589-1597. (2012) Zbl1257.35092MR2964616DOI10.1016/j.aim.2012.07.005
  24. Nadirashvili, N., Vlăduţ, S., 10.1007/s00039-007-0626-7, Geom. Funct. Anal. 17 (2007), 1283-1296. (2007) Zbl1132.35036MR2373018DOI10.1007/s00039-007-0626-7
  25. Shao, Y., A family of parameter-dependent diffeomorphisms acting on function spaces over a Riemannian manifold and applications to geometric flows, arXiv:1309.2043 (2013), 36 pages. (2013) MR3311893
  26. Shao, Y., Simonett, G., 10.1007/s00028-014-0218-6, J. Evol. Equ. 14 (2014), 211-248. (2014) Zbl1295.35161MR3169036DOI10.1007/s00028-014-0218-6
  27. Simon, M., Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012), 59-94. (2012) Zbl1239.53085MR2876261
  28. Simon, M., 10.4310/CAG.2002.v10.n5.a7, Commun. Anal. Geom. 10 (2002), 1033-1074. (2002) Zbl1034.58008MR1957662DOI10.4310/CAG.2002.v10.n5.a7
  29. Simpson, H. C., Spector, S. J., 10.1007/BF00251549, Arch. Ration. Mech. Anal. 84 (1983), 55-68. (1983) Zbl0526.73026MR0713118DOI10.1007/BF00251549
  30. Solonnikov, V. A., On boundary value problems for linear parabolic systems of differential equations of general form, Trudy Mat. Inst. Steklov. 83 (1965), 3-163. (1965) Zbl0164.12502MR0211083
  31. Šverák, V., 10.1017/S0308210500015080, Proc. R. Soc. Edinb., Sect. A, Math. 120 (1992), 185-189. (1992) Zbl0777.49015MR1149994DOI10.1017/S0308210500015080
  32. Wang, C., 10.1007/s00205-010-0343-5, Arch. Ration. Mech. Anal. 200 (2011), 1-19. (2011) Zbl1285.35085MR2781584DOI10.1007/s00205-010-0343-5
  33. Wang, M.-T., 10.1002/cpa.10117, Commun. Pure Appl. Math. 57 (2004), 267-281. (2004) Zbl1071.35050MR2012810DOI10.1002/cpa.10117
  34. Wang, M.-T., 10.4310/CAG.2004.v12.n3.a4, Commun. Anal. Geom. 12 (2004), 581-599. (2004) Zbl1059.53053MR2128604DOI10.4310/CAG.2004.v12.n3.a4
  35. Whitney, H., 10.2307/1968624, Ann. Math. (2) 37 (1936), 865-878. (1936) Zbl0015.18002MR1503315DOI10.2307/1968624

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.