Parabolic equations with rough data
Mathematica Bohemica (2015)
- Volume: 140, Issue: 4, page 457-477
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKoch, Herbert, and Lamm, Tobias. "Parabolic equations with rough data." Mathematica Bohemica 140.4 (2015): 457-477. <http://eudml.org/doc/271834>.
@article{Koch2015,
abstract = {We survey recent work on local well-posedness results for parabolic equations and systems with rough initial data. The design of the function spaces is guided by tools and constructions from harmonic analysis, like maximal functions, square functions and Carleson measures. We construct solutions under virtually optimal scale invariant conditions on the initial data. Applications include BMO initial data for the harmonic map heat flow and the Ricci-DeTurck flow for initial metrics with small local oscillation. The approach is sufficiently flexible to apply to boundary value problems, quasilinear and fully nonlinear equations.},
author = {Koch, Herbert, Lamm, Tobias},
journal = {Mathematica Bohemica},
keywords = {parabolic equation; rough initial data},
language = {eng},
number = {4},
pages = {457-477},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Parabolic equations with rough data},
url = {http://eudml.org/doc/271834},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Koch, Herbert
AU - Lamm, Tobias
TI - Parabolic equations with rough data
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 4
SP - 457
EP - 477
AB - We survey recent work on local well-posedness results for parabolic equations and systems with rough initial data. The design of the function spaces is guided by tools and constructions from harmonic analysis, like maximal functions, square functions and Carleson measures. We construct solutions under virtually optimal scale invariant conditions on the initial data. Applications include BMO initial data for the harmonic map heat flow and the Ricci-DeTurck flow for initial metrics with small local oscillation. The approach is sufficiently flexible to apply to boundary value problems, quasilinear and fully nonlinear equations.
LA - eng
KW - parabolic equation; rough initial data
UR - http://eudml.org/doc/271834
ER -
References
top- Angenent, S. B., 10.1017/S0308210500024598, Proc. R. Soc. Edinb., Sect. A, Math. 115 (1990), 91-107. (1990) Zbl0723.34047MR1059647DOI10.1017/S0308210500024598
- Angenent, S. B., Parabolic equations for curves on surfaces. I: Curves with -integrable curvature, Ann. Math. (2) 132 (1990), 451-483. (1990) Zbl0789.58070MR1078266
- Aronson, D. G., Graveleau, J., 10.1017/S095679250000098X, Eur. J. Appl. Math. 4 (1993), 65-81. (1993) Zbl0780.35079MR1208420DOI10.1017/S095679250000098X
- Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P., The solution of the Kato square root problem for second order elliptic operators on , Ann. Math. (2) 156 (2002), 633-654. (2002) MR1933726
- Cabezas-Rivas, E., Wilking, B., How to produce a Ricci flow via Cheeger-{G}romoll exhaustion, (to appear) in J. Eur. Math. Soc.
- Chen, B.-L., 10.4310/jdg/1246888488, J. Differ. Geom. 82 (2009), 363-382. (2009) Zbl1177.53036MR2520796DOI10.4310/jdg/1246888488
- Chen, B.-L., Zhu, X.-P., 10.4310/jdg/1175266184, J. Differ. Geom. 74 (2006), 119-154. (2006) Zbl1104.53032MR2260930DOI10.4310/jdg/1175266184
- Dahlberg, B. E. J., Kenig, C. E., 10.4171/RMI/34, Rev. Mat. Iberoam. 2 (1986), 267-305. (1986) Zbl0644.35057MR0908054DOI10.4171/RMI/34
- Daskalopoulos, P., Hamilton, R., 10.1090/S0894-0347-98-00277-X, J. Am. Math. Soc. 11 (1998), 899-965. (1998) Zbl0910.35145MR1623198DOI10.1090/S0894-0347-98-00277-X
- Daskalopoulos, P., Hamilton, R., Lee, K., 10.1215/S0012-7094-01-10824-7, Duke Math. J. 108 (2001), 295-327. (2001) Zbl1017.35052MR1833393DOI10.1215/S0012-7094-01-10824-7
- Denzler, J., Koch, H., McCann, R. J., Higher-order time asymptotics of fast diffusion in Euclidean space: a dynamical systems approach, Mem. Am. Math. Soc. 234 (2015), no. 1101, 81 pages. (2015) Zbl1315.35004MR3307161
- Denzler, J., McCann, R. J., 10.1007/s00205-004-0336-3, Arch. Ration. Mech. Anal. 175 (2005), 301-342. (2005) Zbl1083.35074MR2126633DOI10.1007/s00205-004-0336-3
- DeTurck, D. M., 10.4310/jdg/1214509286, J. Differ. Geom. 18 (1983), 157-162. (1983) Zbl0517.53044MR0697987DOI10.4310/jdg/1214509286
- Giacomelli, L., Gnann, M. V., Knüpfer, H., Otto, F., 10.1016/j.jde.2014.03.010, J. Differ. Equations 257 (2014), 15-81. (2014) Zbl1302.35218MR3197240DOI10.1016/j.jde.2014.03.010
- Giacomelli, L., Knüpfer, H., Otto, F., 10.1016/j.jde.2008.06.005, J. Differ. Equations 245 (2008), 1454-1506. (2008) Zbl1159.35039MR2436450DOI10.1016/j.jde.2008.06.005
- Jerison, D., Kenig, C. E., 10.1006/jfan.1995.1067, J. Funct. Anal. 130 (1995), 161-219. (1995) Zbl0832.35034MR1331981DOI10.1006/jfan.1995.1067
- John, D., 10.1016/j.jde.2015.05.013, J. Differ. Equations 259 (2015), Article ID 7877, 4122-4171. (2015) Zbl1322.35084MR3369273DOI10.1016/j.jde.2015.05.013
- Kienzler, C., Flat Fronts and Stability for the Porous Medium Equation, (2014), arxiv:1403.5811[math.AP]. (2014) MR3572559
- Koch, H., Lamm, T., 10.4310/AJM.2012.v16.n2.a3, Asian J. Math. 16 (2012), 209-235. (2012) Zbl1252.35159MR2916362DOI10.4310/AJM.2012.v16.n2.a3
- Koch, H., Tataru, D., 10.1006/aima.2000.1937, Adv. Math. 157 (2001), 22-35. (2001) Zbl0972.35084MR1808843DOI10.1006/aima.2000.1937
- Kotschwar, B. L., 10.4310/CAG.2014.v22.n1.a3, Commun. Anal. Geom. 22 (2014), 149-176. (2014) Zbl1303.53056MR3194377DOI10.4310/CAG.2014.v22.n1.a3
- Kotschwar, B. L., 10.1112/blms/bds074, Bull. Lond. Math. Soc. 45 (2013), 153-158. (2013) Zbl1259.53065MR3033963DOI10.1112/blms/bds074
- Nadirashvili, N., Tkachev, V., Vlăduţ, S., 10.1016/j.aim.2012.07.005, Adv. Math. 231 (2012), 1589-1597. (2012) Zbl1257.35092MR2964616DOI10.1016/j.aim.2012.07.005
- Nadirashvili, N., Vlăduţ, S., 10.1007/s00039-007-0626-7, Geom. Funct. Anal. 17 (2007), 1283-1296. (2007) Zbl1132.35036MR2373018DOI10.1007/s00039-007-0626-7
- Shao, Y., A family of parameter-dependent diffeomorphisms acting on function spaces over a Riemannian manifold and applications to geometric flows, arXiv:1309.2043 (2013), 36 pages. (2013) MR3311893
- Shao, Y., Simonett, G., 10.1007/s00028-014-0218-6, J. Evol. Equ. 14 (2014), 211-248. (2014) Zbl1295.35161MR3169036DOI10.1007/s00028-014-0218-6
- Simon, M., Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012), 59-94. (2012) Zbl1239.53085MR2876261
- Simon, M., 10.4310/CAG.2002.v10.n5.a7, Commun. Anal. Geom. 10 (2002), 1033-1074. (2002) Zbl1034.58008MR1957662DOI10.4310/CAG.2002.v10.n5.a7
- Simpson, H. C., Spector, S. J., 10.1007/BF00251549, Arch. Ration. Mech. Anal. 84 (1983), 55-68. (1983) Zbl0526.73026MR0713118DOI10.1007/BF00251549
- Solonnikov, V. A., On boundary value problems for linear parabolic systems of differential equations of general form, Trudy Mat. Inst. Steklov. 83 (1965), 3-163. (1965) Zbl0164.12502MR0211083
- Šverák, V., 10.1017/S0308210500015080, Proc. R. Soc. Edinb., Sect. A, Math. 120 (1992), 185-189. (1992) Zbl0777.49015MR1149994DOI10.1017/S0308210500015080
- Wang, C., 10.1007/s00205-010-0343-5, Arch. Ration. Mech. Anal. 200 (2011), 1-19. (2011) Zbl1285.35085MR2781584DOI10.1007/s00205-010-0343-5
- Wang, M.-T., 10.1002/cpa.10117, Commun. Pure Appl. Math. 57 (2004), 267-281. (2004) Zbl1071.35050MR2012810DOI10.1002/cpa.10117
- Wang, M.-T., 10.4310/CAG.2004.v12.n3.a4, Commun. Anal. Geom. 12 (2004), 581-599. (2004) Zbl1059.53053MR2128604DOI10.4310/CAG.2004.v12.n3.a4
- Whitney, H., 10.2307/1968624, Ann. Math. (2) 37 (1936), 865-878. (1936) Zbl0015.18002MR1503315DOI10.2307/1968624
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.