Stein’s method in high dimensions with applications
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 2, page 529-549
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topRöllin, Adrian. "Stein’s method in high dimensions with applications." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 529-549. <http://eudml.org/doc/271945>.
@article{Röllin2013,
abstract = {Let $h$ be a three times partially differentiable function on $\mathbb \{R\}^\{n\}$, let $X=(X_\{1\},\ldots ,X_\{n\})$ be a collection of real-valued random variables and let $Z=(Z_\{1\},\ldots ,Z_\{n\})$ be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference $\mathbb \{E\}h(X)-\mathbb \{E\}h(Z)$ in cases where the coordinates of $X$ are not necessarily independent, focusing on the high dimensional case $n\rightarrow \infty $. In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie–Weiss model, etc. We will also give applications to the Sherrington–Kirkpatrick model and last passage percolation on thin rectangles.},
author = {Röllin, Adrian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Stein’s method; gaussian interpolation; last passage percolation on thin rectangles; Sherrington–Kirkpatrick model; Curie–Weiss model; Stein's method; Gaussian interpolation; last passage percolation; Sherrington-Kirkpatrick model; Curie-Weiss model},
language = {eng},
number = {2},
pages = {529-549},
publisher = {Gauthier-Villars},
title = {Stein’s method in high dimensions with applications},
url = {http://eudml.org/doc/271945},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Röllin, Adrian
TI - Stein’s method in high dimensions with applications
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 529
EP - 549
AB - Let $h$ be a three times partially differentiable function on $\mathbb {R}^{n}$, let $X=(X_{1},\ldots ,X_{n})$ be a collection of real-valued random variables and let $Z=(Z_{1},\ldots ,Z_{n})$ be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference $\mathbb {E}h(X)-\mathbb {E}h(Z)$ in cases where the coordinates of $X$ are not necessarily independent, focusing on the high dimensional case $n\rightarrow \infty $. In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie–Weiss model, etc. We will also give applications to the Sherrington–Kirkpatrick model and last passage percolation on thin rectangles.
LA - eng
KW - Stein’s method; gaussian interpolation; last passage percolation on thin rectangles; Sherrington–Kirkpatrick model; Curie–Weiss model; Stein's method; Gaussian interpolation; last passage percolation; Sherrington-Kirkpatrick model; Curie-Weiss model
UR - http://eudml.org/doc/271945
ER -
References
top- [1] J. Baik and T. M. Suidan. A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not.2005 (2005) 325–337. Zbl1136.60313MR2131383
- [2] A. D. Barbour, M. Karoński and A. Ruciński. A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B47 (1989) 125–145. Zbl0689.05042MR1047781
- [3] T. Bodineau and J. Martin. A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10 (2005) 105–112 (electronic). Zbl1111.60068MR2150699
- [4] E. Bolthausen. Exact convergence rates in some martingale central limit theorems. Ann. Probab.10 (1982) 672–688. Zbl0494.60020MR659537
- [5] P. Carmona and Y. Hu. Universality in Sherrington–Kirkpatrick’s spin glass model. Ann. Inst. Henri Poincaré Probab. Stat.42 (2006) 215–222. Zbl1099.82005MR2199799
- [6] S. Chatterjee. A simple invariance theorem. Preprint, 2005. Available at http://arxiv.org/abs/math.PR/0508213.
- [7] S. Chatterjee. A generalization of the Lindeberg principle. Ann. Probab.34 (2006) 2061–2076. Zbl1117.60034MR2294976
- [8] S. Chatterjee and E. Meckes. Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat.4 (2008) 257–283. Zbl1162.60310MR2453473
- [9] S. Chatterjee and Q.-M. Shao. Non-normal approximation by Stein’s method of exchangeable pairs with application to the Curie–Weiss model. Ann. Appl. Probab.21 (2011) 464–483. Zbl1216.60018MR2807964
- [10] L. H. Y. Chen and A. Röllin. Stein couplings for normal approximation. Preprint, 2010. Available at http://arxiv.org/abs/1003.6039.
- [11] A. Dembo and Y. Rinott. Some examples of normal approximations by Stein’s method. In Random Discrete Structures (Minneapolis, MN, 1993) 25–44. IMA Vol. Math. Appl. 76. Springer, New York, 1996. Zbl0847.60015MR1395606
- [12] P. Eichelsbacher and M. Löwe. Stein’s method for dependent random variables occurring in statistical mechanics. Electron. J. Probab.15 (2010) 962–988. Zbl1225.60042MR2659754
- [13] L. Erdős, H.-T. Yau and J. Yin. Bulk universality for generalized Wigner matrices. Preprint, 2010. Available at arxiv.org/abs/1001.3453. Zbl1277.15026MR2981427
- [14] F. Götze and A. N. Tikhomirov. Limit theorems for spectra of random matrices with martingale structure. Teor. Veroyatn. Primen.51 (2006) 171–192. Zbl1118.15022MR2324173
- [15] I. G. Grama. On moderate deviations for martingales. Ann. Probab.25 (1997) 152–183. Zbl0881.60026MR1428504
- [16] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys.209 (2000) 437–476. Zbl0969.15008MR1737991
- [17] K. Johansson. Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys.215 (2001) 683–705. Zbl0978.15020MR1810949
- [18] E. S. Meckes. On Stein’s method for multivariate normal approximation. In High Dimensional Probability V: The Luminy Volume 153–178. Inst. Math. Statist., Beachwood, OH, 2009. Zbl1243.60025MR2797946
- [19] E. Mossel, R. O’Donnell and K. Oleszkiewicz. Noise stability of functions with low influences: Invariance and optimality. Ann. of Math.171 (2010) 295–341. Zbl1201.60031MR2630040
- [20] M. Raič. A multivariate CLT for decomposable random vectors with finite second moments. J. Theoret. Probab.17 (2004) 573–603. Zbl1059.62050MR2091552
- [21] G. Reinert and A. Röllin. Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab.37 (2009) 2150–2173. Zbl1200.62010MR2573554
- [22] I. Rinott and V. I. Rotar’. Some estimates for the rate of convergence in the CLT for martingales. II. Theory Probab. Appl.44 (1999) 523–536. Zbl0969.60036MR1805821
- [23] Y. Rinott and V. Rotar’. A multivariate CLT for local dependence with rate and applications to multivariate graph related statistics. J. Multivariate Anal.56 (1996) 333–350. Zbl0859.60019MR1379533
- [24] V. I. Rotar’. Certain limit theorems for polynomials of degree two. Teor. Veroyatn. Primen. 18 (1973) 527–534. Actual title is “Some limit theorems for polynomials of degree two”. Zbl0304.60037MR326803
- [25] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J.41 (1962) 463–501. MR133183
- [26] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 583–602. Univ. California Press, Berkeley, CA, 1972. Zbl0278.60026MR402873
- [27] T. Suidan. A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A39 (2006) 8977–8981. Zbl1148.82014MR2240468
- [28] M. Talagrand. The Parisi formula. Ann. of Math.163 (2006) 221–263. Zbl1137.82010MR2195134
- [29] M. Talagrand. Mean Field Models for Spin Glasses. Volume I. Springer-Verlag, Berlin, 2010. Zbl1214.82002MR2731561
- [30] T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics. Acta Math.206 (2011) 127–204. Zbl1217.15043MR2784665
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.