Stein’s method in high dimensions with applications

Adrian Röllin

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 2, page 529-549
  • ISSN: 0246-0203

Abstract

top
Let h be a three times partially differentiable function on n , let X = ( X 1 , ... , X n ) be a collection of real-valued random variables and let Z = ( Z 1 , ... , Z n ) be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference 𝔼 h ( X ) - 𝔼 h ( Z ) in cases where the coordinates of X are not necessarily independent, focusing on the high dimensional case n . In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie–Weiss model, etc. We will also give applications to the Sherrington–Kirkpatrick model and last passage percolation on thin rectangles.

How to cite

top

Röllin, Adrian. "Stein’s method in high dimensions with applications." Annales de l'I.H.P. Probabilités et statistiques 49.2 (2013): 529-549. <http://eudml.org/doc/271945>.

@article{Röllin2013,
abstract = {Let $h$ be a three times partially differentiable function on $\mathbb \{R\}^\{n\}$, let $X=(X_\{1\},\ldots ,X_\{n\})$ be a collection of real-valued random variables and let $Z=(Z_\{1\},\ldots ,Z_\{n\})$ be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference $\mathbb \{E\}h(X)-\mathbb \{E\}h(Z)$ in cases where the coordinates of $X$ are not necessarily independent, focusing on the high dimensional case $n\rightarrow \infty $. In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie–Weiss model, etc. We will also give applications to the Sherrington–Kirkpatrick model and last passage percolation on thin rectangles.},
author = {Röllin, Adrian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Stein’s method; gaussian interpolation; last passage percolation on thin rectangles; Sherrington–Kirkpatrick model; Curie–Weiss model; Stein's method; Gaussian interpolation; last passage percolation; Sherrington-Kirkpatrick model; Curie-Weiss model},
language = {eng},
number = {2},
pages = {529-549},
publisher = {Gauthier-Villars},
title = {Stein’s method in high dimensions with applications},
url = {http://eudml.org/doc/271945},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Röllin, Adrian
TI - Stein’s method in high dimensions with applications
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 2
SP - 529
EP - 549
AB - Let $h$ be a three times partially differentiable function on $\mathbb {R}^{n}$, let $X=(X_{1},\ldots ,X_{n})$ be a collection of real-valued random variables and let $Z=(Z_{1},\ldots ,Z_{n})$ be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference $\mathbb {E}h(X)-\mathbb {E}h(Z)$ in cases where the coordinates of $X$ are not necessarily independent, focusing on the high dimensional case $n\rightarrow \infty $. In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie–Weiss model, etc. We will also give applications to the Sherrington–Kirkpatrick model and last passage percolation on thin rectangles.
LA - eng
KW - Stein’s method; gaussian interpolation; last passage percolation on thin rectangles; Sherrington–Kirkpatrick model; Curie–Weiss model; Stein's method; Gaussian interpolation; last passage percolation; Sherrington-Kirkpatrick model; Curie-Weiss model
UR - http://eudml.org/doc/271945
ER -

References

top
  1. [1] J. Baik and T. M. Suidan. A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not.2005 (2005) 325–337. Zbl1136.60313MR2131383
  2. [2] A. D. Barbour, M. Karoński and A. Ruciński. A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B47 (1989) 125–145. Zbl0689.05042MR1047781
  3. [3] T. Bodineau and J. Martin. A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10 (2005) 105–112 (electronic). Zbl1111.60068MR2150699
  4. [4] E. Bolthausen. Exact convergence rates in some martingale central limit theorems. Ann. Probab.10 (1982) 672–688. Zbl0494.60020MR659537
  5. [5] P. Carmona and Y. Hu. Universality in Sherrington–Kirkpatrick’s spin glass model. Ann. Inst. Henri Poincaré Probab. Stat.42 (2006) 215–222. Zbl1099.82005MR2199799
  6. [6] S. Chatterjee. A simple invariance theorem. Preprint, 2005. Available at http://arxiv.org/abs/math.PR/0508213. 
  7. [7] S. Chatterjee. A generalization of the Lindeberg principle. Ann. Probab.34 (2006) 2061–2076. Zbl1117.60034MR2294976
  8. [8] S. Chatterjee and E. Meckes. Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat.4 (2008) 257–283. Zbl1162.60310MR2453473
  9. [9] S. Chatterjee and Q.-M. Shao. Non-normal approximation by Stein’s method of exchangeable pairs with application to the Curie–Weiss model. Ann. Appl. Probab.21 (2011) 464–483. Zbl1216.60018MR2807964
  10. [10] L. H. Y. Chen and A. Röllin. Stein couplings for normal approximation. Preprint, 2010. Available at http://arxiv.org/abs/1003.6039. 
  11. [11] A. Dembo and Y. Rinott. Some examples of normal approximations by Stein’s method. In Random Discrete Structures (Minneapolis, MN, 1993) 25–44. IMA Vol. Math. Appl. 76. Springer, New York, 1996. Zbl0847.60015MR1395606
  12. [12] P. Eichelsbacher and M. Löwe. Stein’s method for dependent random variables occurring in statistical mechanics. Electron. J. Probab.15 (2010) 962–988. Zbl1225.60042MR2659754
  13. [13] L. Erdős, H.-T. Yau and J. Yin. Bulk universality for generalized Wigner matrices. Preprint, 2010. Available at arxiv.org/abs/1001.3453. Zbl1277.15026MR2981427
  14. [14] F. Götze and A. N. Tikhomirov. Limit theorems for spectra of random matrices with martingale structure. Teor. Veroyatn. Primen.51 (2006) 171–192. Zbl1118.15022MR2324173
  15. [15] I. G. Grama. On moderate deviations for martingales. Ann. Probab.25 (1997) 152–183. Zbl0881.60026MR1428504
  16. [16] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys.209 (2000) 437–476. Zbl0969.15008MR1737991
  17. [17] K. Johansson. Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys.215 (2001) 683–705. Zbl0978.15020MR1810949
  18. [18] E. S. Meckes. On Stein’s method for multivariate normal approximation. In High Dimensional Probability V: The Luminy Volume 153–178. Inst. Math. Statist., Beachwood, OH, 2009. Zbl1243.60025MR2797946
  19. [19] E. Mossel, R. O’Donnell and K. Oleszkiewicz. Noise stability of functions with low influences: Invariance and optimality. Ann. of Math.171 (2010) 295–341. Zbl1201.60031MR2630040
  20. [20] M. Raič. A multivariate CLT for decomposable random vectors with finite second moments. J. Theoret. Probab.17 (2004) 573–603. Zbl1059.62050MR2091552
  21. [21] G. Reinert and A. Röllin. Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab.37 (2009) 2150–2173. Zbl1200.62010MR2573554
  22. [22] I. Rinott and V. I. Rotar’. Some estimates for the rate of convergence in the CLT for martingales. II. Theory Probab. Appl.44 (1999) 523–536. Zbl0969.60036MR1805821
  23. [23] Y. Rinott and V. Rotar’. A multivariate CLT for local dependence with n - 1 / 2 log n rate and applications to multivariate graph related statistics. J. Multivariate Anal.56 (1996) 333–350. Zbl0859.60019MR1379533
  24. [24] V. I. Rotar’. Certain limit theorems for polynomials of degree two. Teor. Veroyatn. Primen. 18 (1973) 527–534. Actual title is “Some limit theorems for polynomials of degree two”. Zbl0304.60037MR326803
  25. [25] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J.41 (1962) 463–501. MR133183
  26. [26] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 583–602. Univ. California Press, Berkeley, CA, 1972. Zbl0278.60026MR402873
  27. [27] T. Suidan. A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A39 (2006) 8977–8981. Zbl1148.82014MR2240468
  28. [28] M. Talagrand. The Parisi formula. Ann. of Math.163 (2006) 221–263. Zbl1137.82010MR2195134
  29. [29] M. Talagrand. Mean Field Models for Spin Glasses. Volume I. Springer-Verlag, Berlin, 2010. Zbl1214.82002MR2731561
  30. [30] T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics. Acta Math.206 (2011) 127–204. Zbl1217.15043MR2784665

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.