The rate of escape for random walks on polycyclic and metabelian groups
Annales de l'I.H.P. Probabilités et statistiques (2013)
- Volume: 49, Issue: 1, page 270-287
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topThompson, Russ. "The rate of escape for random walks on polycyclic and metabelian groups." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 270-287. <http://eudml.org/doc/271951>.
@article{Thompson2013,
abstract = {We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian sandpile.},
author = {Thompson, Russ},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {law of iterated logarithm; metabelian group; polycyclic group; random walk; rate of escape; abelian sandpile; solvable group; subgroup distortion},
language = {eng},
number = {1},
pages = {270-287},
publisher = {Gauthier-Villars},
title = {The rate of escape for random walks on polycyclic and metabelian groups},
url = {http://eudml.org/doc/271951},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Thompson, Russ
TI - The rate of escape for random walks on polycyclic and metabelian groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 270
EP - 287
AB - We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian sandpile.
LA - eng
KW - law of iterated logarithm; metabelian group; polycyclic group; random walk; rate of escape; abelian sandpile; solvable group; subgroup distortion
UR - http://eudml.org/doc/271951
ER -
References
top- [1] T. Austin, A. Naor and Y. Peres. The wreath product of with has Hilbert compression exponent . Proc. Amer. Math. Soc.137 (2009) 85–90. Zbl1226.20032MR2439428
- [2] M. T. Barlow and E. A. Perkins. Brownian motion on the Sierpiński gasket. Probab. Theory Related Fields79 (1988) 543–623. Zbl0635.60090MR966175
- [3] G. Baumslag. Subgroups of finitely presented metabelian groups. J. Aust. Math. Soc. 16 (1973) 98–110. Collection of articles dedicated to the memory of Hanna Neumann, I. Zbl0287.20027MR332999
- [4] I. Benjamini and D. Revelle. Instability of set recurrence and Green’s function on groups with the Liouville property. Potential Anal.34 (2011) 199–206. Zbl1223.05286MR2754971
- [5] G. R. Conner. Discreteness properties of translation numbers in solvable groups. J. Group Theory3 (2000) 77–94. Zbl0956.20039MR1736519
- [6] T. Davis and A. Olshanskii. Subgroup distortion in wreath products of cyclic groups. J. Pure Appl. Algebra215 (2011) 2987–3004. Zbl1259.20049MR2811580
- [7] Y. Derriennic. Quelques applications du théorème ergodique sous-additif. In Conference on Random Walks (Kleebach, 1979) 183–201. Astérisque 74. Soc. Math. France, Paris, 1980. Zbl0446.60059MR588163
- [8] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 2010. Zbl1202.60001MR2722836
- [9] A. Erschler. On drift and entropy growth for random walks on groups. Ann. Probab.31 (2003) 1193–1204. Zbl1043.60005MR1988468
- [10] A. Erschler. Critical constants for recurrence of random walks on -spaces. Ann. Inst. Fourier (Grenoble) 55 (2005) 493–509. Zbl1133.20031MR2147898
- [11] S. M. Gersten. Preservation and distortion of area in finitely presented groups. Geom. Funct. Anal.6 (1996) 301–345. Zbl0868.20033MR1384614
- [12] A. Grigor’yan. Escape rate of Brownian motion on Riemannian manifolds. Appl. Anal.71 (1999) 63–89. Zbl1020.58024MR1690091
- [13] Y. Guivarc’h. Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire. In Conference on Random Walks (Kleebach, 1979) 47–98. Astérisque 74. Soc. Math. France, Paris, 1980. Zbl0448.60007MR588157
- [14] W. Hebisch and L. Saloff-Coste. Gaussian estimates for Markov chains and random walks on groups. Ann. Probab.21 (1993) 673–709. Zbl0776.60086MR1217561
- [15] V. A. Kaĭmanovich and A. M. Vershik. Random walks on discrete groups: Boundary and entropy. Ann. Probab.11 (1983) 457–490. Zbl0641.60009MR704539
- [16] J. F. C. Kingman. The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B30 (1968) 499–510. Zbl0182.22802MR254907
- [17] J. R. Lee and Y. Peres. Harmonic maps on amenable groups and a diffusive lower bound for random walks. Preprint, 2009. Zbl1284.05250MR3127886
- [18] V. Nekrashevych. Self-Similar Groups. Mathematical Surveys and Monographs 117. Amer. Math. Soc., Providence, RI, 2005. Zbl1087.20032MR2162164
- [19] D. V. Osin. Exponential radicals of solvable Lie groups. J. Algebra248 (2002) 790–805. Zbl1001.22006MR1882124
- [20] C. Pittet. Følner sequences in polycyclic groups. Rev. Mat. Iberoamericana11 (1995) 675–685. Zbl0842.20035MR1363210
- [21] F. Redig. Mathematical aspects of the abelian sandpile model. In Mathematical Statistical Physics 657–729. Elsevier, Amsterdam, 2006. Zbl05723807MR2581895
- [22] D. Revelle. Rate of escape of random walks on wreath products and related groups. Ann. Probab.31 (2003) 1917–1934. Zbl1051.60047MR2016605
- [23] P. Révész. Random Walk in Random and Non-Random Environments, 2nd edition. World Scientific, Hackensack, NJ, 2005. Zbl1283.60007
- [24] D. Segal. Polycyclic Groups. Cambridge Tracts in Mathematics 82. Cambridge Univ. Press, Cambridge, 1983. Zbl0516.20001MR713786
- [25] R. Tessera. Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. Comment. Math. Helv.86 (2011) 499–535. Zbl1274.43009MR2803851
- [26] E. Teufl. The average displacement of the simple random walk on the Sierpiński graph. Combin. Probab. Comput.12 (2003) 203–222. Zbl1025.60034MR1967404
- [27] N. T. Varopoulos. Long range estimates for Markov chains. Bull. Sci. Math.109 (1985) 225–252. Zbl0583.60063MR822826
- [28] A. D. Warshall. Deep pockets in lattices and other groups. Trans. Amer. Math. Soc.362 (2010) 577–601. Zbl1269.20034MR2551498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.