The rate of escape for random walks on polycyclic and metabelian groups

Russ Thompson

Annales de l'I.H.P. Probabilités et statistiques (2013)

  • Volume: 49, Issue: 1, page 270-287
  • ISSN: 0246-0203

Abstract

top
We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian sandpile.

How to cite

top

Thompson, Russ. "The rate of escape for random walks on polycyclic and metabelian groups." Annales de l'I.H.P. Probabilités et statistiques 49.1 (2013): 270-287. <http://eudml.org/doc/271951>.

@article{Thompson2013,
abstract = {We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian sandpile.},
author = {Thompson, Russ},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {law of iterated logarithm; metabelian group; polycyclic group; random walk; rate of escape; abelian sandpile; solvable group; subgroup distortion},
language = {eng},
number = {1},
pages = {270-287},
publisher = {Gauthier-Villars},
title = {The rate of escape for random walks on polycyclic and metabelian groups},
url = {http://eudml.org/doc/271951},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Thompson, Russ
TI - The rate of escape for random walks on polycyclic and metabelian groups
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2013
PB - Gauthier-Villars
VL - 49
IS - 1
SP - 270
EP - 287
AB - We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian sandpile.
LA - eng
KW - law of iterated logarithm; metabelian group; polycyclic group; random walk; rate of escape; abelian sandpile; solvable group; subgroup distortion
UR - http://eudml.org/doc/271951
ER -

References

top
  1. [1] T. Austin, A. Naor and Y. Peres. The wreath product of with has Hilbert compression exponent 2 3 . Proc. Amer. Math. Soc.137 (2009) 85–90. Zbl1226.20032MR2439428
  2. [2] M. T. Barlow and E. A. Perkins. Brownian motion on the Sierpiński gasket. Probab. Theory Related Fields79 (1988) 543–623. Zbl0635.60090MR966175
  3. [3] G. Baumslag. Subgroups of finitely presented metabelian groups. J. Aust. Math. Soc. 16 (1973) 98–110. Collection of articles dedicated to the memory of Hanna Neumann, I. Zbl0287.20027MR332999
  4. [4] I. Benjamini and D. Revelle. Instability of set recurrence and Green’s function on groups with the Liouville property. Potential Anal.34 (2011) 199–206. Zbl1223.05286MR2754971
  5. [5] G. R. Conner. Discreteness properties of translation numbers in solvable groups. J. Group Theory3 (2000) 77–94. Zbl0956.20039MR1736519
  6. [6] T. Davis and A. Olshanskii. Subgroup distortion in wreath products of cyclic groups. J. Pure Appl. Algebra215 (2011) 2987–3004. Zbl1259.20049MR2811580
  7. [7] Y. Derriennic. Quelques applications du théorème ergodique sous-additif. In Conference on Random Walks (Kleebach, 1979) 183–201. Astérisque 74. Soc. Math. France, Paris, 1980. Zbl0446.60059MR588163
  8. [8] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 2010. Zbl1202.60001MR2722836
  9. [9] A. Erschler. On drift and entropy growth for random walks on groups. Ann. Probab.31 (2003) 1193–1204. Zbl1043.60005MR1988468
  10. [10] A. Erschler. Critical constants for recurrence of random walks on G -spaces. Ann. Inst. Fourier (Grenoble) 55 (2005) 493–509. Zbl1133.20031MR2147898
  11. [11] S. M. Gersten. Preservation and distortion of area in finitely presented groups. Geom. Funct. Anal.6 (1996) 301–345. Zbl0868.20033MR1384614
  12. [12] A. Grigor’yan. Escape rate of Brownian motion on Riemannian manifolds. Appl. Anal.71 (1999) 63–89. Zbl1020.58024MR1690091
  13. [13] Y. Guivarc’h. Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire. In Conference on Random Walks (Kleebach, 1979) 47–98. Astérisque 74. Soc. Math. France, Paris, 1980. Zbl0448.60007MR588157
  14. [14] W. Hebisch and L. Saloff-Coste. Gaussian estimates for Markov chains and random walks on groups. Ann. Probab.21 (1993) 673–709. Zbl0776.60086MR1217561
  15. [15] V. A. Kaĭmanovich and A. M. Vershik. Random walks on discrete groups: Boundary and entropy. Ann. Probab.11 (1983) 457–490. Zbl0641.60009MR704539
  16. [16] J. F. C. Kingman. The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B30 (1968) 499–510. Zbl0182.22802MR254907
  17. [17] J. R. Lee and Y. Peres. Harmonic maps on amenable groups and a diffusive lower bound for random walks. Preprint, 2009. Zbl1284.05250MR3127886
  18. [18] V. Nekrashevych. Self-Similar Groups. Mathematical Surveys and Monographs 117. Amer. Math. Soc., Providence, RI, 2005. Zbl1087.20032MR2162164
  19. [19] D. V. Osin. Exponential radicals of solvable Lie groups. J. Algebra248 (2002) 790–805. Zbl1001.22006MR1882124
  20. [20] C. Pittet. Følner sequences in polycyclic groups. Rev. Mat. Iberoamericana11 (1995) 675–685. Zbl0842.20035MR1363210
  21. [21] F. Redig. Mathematical aspects of the abelian sandpile model. In Mathematical Statistical Physics 657–729. Elsevier, Amsterdam, 2006. Zbl05723807MR2581895
  22. [22] D. Revelle. Rate of escape of random walks on wreath products and related groups. Ann. Probab.31 (2003) 1917–1934. Zbl1051.60047MR2016605
  23. [23] P. Révész. Random Walk in Random and Non-Random Environments, 2nd edition. World Scientific, Hackensack, NJ, 2005. Zbl1283.60007
  24. [24] D. Segal. Polycyclic Groups. Cambridge Tracts in Mathematics 82. Cambridge Univ. Press, Cambridge, 1983. Zbl0516.20001MR713786
  25. [25] R. Tessera. Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. Comment. Math. Helv.86 (2011) 499–535. Zbl1274.43009MR2803851
  26. [26] E. Teufl. The average displacement of the simple random walk on the Sierpiński graph. Combin. Probab. Comput.12 (2003) 203–222. Zbl1025.60034MR1967404
  27. [27] N. T. Varopoulos. Long range estimates for Markov chains. Bull. Sci. Math.109 (1985) 225–252. Zbl0583.60063MR822826
  28. [28] A. D. Warshall. Deep pockets in lattices and other groups. Trans. Amer. Math. Soc.362 (2010) 577–601. Zbl1269.20034MR2551498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.