Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models

S. Valère Bitseki Penda; Hacène Djellout

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 3, page 806-844
  • ISSN: 0246-0203

Abstract

top
The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general p th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.

How to cite

top

Bitseki Penda, S. Valère, and Djellout, Hacène. "Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models." Annales de l'I.H.P. Probabilités et statistiques 50.3 (2014): 806-844. <http://eudml.org/doc/271956>.

@article{BitsekiPenda2014,
abstract = {The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general $p$th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.},
author = {Bitseki Penda, S. Valère, Djellout, Hacène},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {deviation inequalities; moderate deviation principle; bifurcating autoregressive process; martingale; limit theorems; least squares estimation; binary tree structure; least-squares estimator; superexponential convergence},
language = {eng},
number = {3},
pages = {806-844},
publisher = {Gauthier-Villars},
title = {Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models},
url = {http://eudml.org/doc/271956},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Bitseki Penda, S. Valère
AU - Djellout, Hacène
TI - Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 3
SP - 806
EP - 844
AB - The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general $p$th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.
LA - eng
KW - deviation inequalities; moderate deviation principle; bifurcating autoregressive process; martingale; limit theorems; least squares estimation; binary tree structure; least-squares estimator; superexponential convergence
UR - http://eudml.org/doc/271956
ER -

References

top
  1. [1] R. Adamczak and P. Milos. CLT for Ornstein–Uhlenbeck branching particle system. Preprint. Available at arXiv:1111.4559. Zbl1321.60035
  2. [2] I. V. Basawa and J. Zhou. Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab.41 (2004) 55–64. Zbl1049.62115MR2057565
  3. [3] B. Bercu, B. de Saporta and A. Gégout-Petit. Asymtotic analysis for bifurcating autoregressive processes via martingale approach. Electron. J. Probab.14 (2009) 2492–2526. Zbl1190.60019MR2563249
  4. [4] B. Bercu and A. Touati. Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab.18 (2008) 1848–1869. Zbl1152.60309MR2462551
  5. [5] V. Bitseki Penda, H. Djellout and A. Guillin. Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application. Ann. Appl. Probab.24 (2014) 235–291. Zbl1293.60036MR3161647
  6. [6] R. Cowan and R. G. Staudte. The bifurcating autoregressive model in cell lineage studies. Biometrics42 (1986) 769–783. Zbl0622.62105
  7. [7] V. H. de la Peña, T. L. Lai and Q.-M. Shao. Self-Normalized Processes. Limit Theory and Statistical Applications. Probability and Its Applications (New York). Springer-Verlag, Berlin, 2009. Zbl1165.62071MR2488094
  8. [8] B. de Saporta, A. Gégout-Petit and L. Marsalle. Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat.5 (2011) 1313–1353. Zbl1274.62192MR2842907
  9. [9] B. de Saporta, A. Gégout-Petit and L. Marsalle. Asymmetry tests for bifurcating auto-regressive processes with missing data. Statist. Probab. Lett.82 (2012) 1439–1444. Zbl1296.62161MR2929798
  10. [10] J. F. Delmas and L. Marsalle. Detection of cellular aging in a Galton–Watson process. Stochastic Process. Appl.120 (2010) 2495–2519. Zbl1206.60077MR2728175
  11. [11] A. Dembo. Moderate deviations for martingales with bounded jumps. Electron. Comm. Probab.1 (1996) 11–17. Zbl0854.60027MR1386290
  12. [12] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. Zbl1177.60035MR1619036
  13. [13] H. Djellout. Moderate deviations for martingale differences and applications to φ -mixing sequences. Stoch. Stoch. Rep.73 (2002) 37–63. Zbl1005.60044MR1914978
  14. [14] H. Djellout, A. Guillin and L. Wu. Moderate deviations of empirical periodogram and non-linear functionals of moving average processes. Ann. Inst. Henri Poincaré Probab. Stat.42 (2006) 393–416. Zbl1100.60010MR2242954
  15. [15] H. Djellout and A. Guillin. Large and moderate deviations for moving average processes. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001) 23–31. Zbl1002.60028MR1928987
  16. [16] N. Gozlan. Integral criteria for transportation-cost inequalities. Electron. Comm. Probab.11 (2006) 64–77. Zbl1112.60009MR2231734
  17. [17] N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields139 (2007) 235–283. Zbl1126.60022MR2322697
  18. [18] J. Guyon. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538–1569. Zbl1143.62049MR2358633
  19. [19] R. M. Huggins and I. V. Basawa. Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab.36 (1999) 1225–1233. Zbl0973.62100MR1746406
  20. [20] R. M. Huggins and I. V. Basawa. Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat.42 (2000) 423–432. Zbl1016.62098MR1802966
  21. [21] S. Y. Hwang, I. V. Basawa and I. K. Yeo. Local asymptotic normality for bifurcating autoregressive processes and related asymptotic inference. Stat. Methodol.6 (2009) 61–69. Zbl1220.62106MR2655539
  22. [22] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence, RI, 2001. Zbl0995.60002MR1849347
  23. [23] P. Massart. Concentration Inequalities and Model Selection. Lecture Notes in Mathematics 1896. Springer, Berlin, 2007. Zbl1170.60006MR2319879
  24. [24] A. Puhalskii. Large deviations of semimartingales: A maxingale problem approach. I. Limits as solutions to a maxingale problem. Stoch. Stoch. Rep. 61 (1997) 141–243. Zbl0890.60025MR1488137
  25. [25] J. Worms. Moderate deviations for stable Markov chains and regression models. Electron. J. Probab. 4 (1999) 28 pp. Zbl0980.62082MR1684149
  26. [26] J. Worms. Moderate deviations of some dependent variables. I. Martingales. Math. Methods Statist.10 (2001) 38–72. Zbl1007.60010MR1841808
  27. [27] J. Worms. Moderate deviations of some dependent variables. II. Some kernel estimators. Math. Methods Statist. 10 (2001) 161–193. Zbl1007.60011MR1851746
  28. [28] J. Zhou and I. V. Basawa. Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett.74 (2005) 77–88. Zbl1070.62075MR2189078
  29. [29] J. Zhou and I. V. Basawa. Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Series Anal.26 (2005) 825–842. Zbl1097.62091MR2203513

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.