Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models
S. Valère Bitseki Penda; Hacène Djellout
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 3, page 806-844
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBitseki Penda, S. Valère, and Djellout, Hacène. "Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models." Annales de l'I.H.P. Probabilités et statistiques 50.3 (2014): 806-844. <http://eudml.org/doc/271956>.
@article{BitsekiPenda2014,
abstract = {The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general $p$th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.},
author = {Bitseki Penda, S. Valère, Djellout, Hacène},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {deviation inequalities; moderate deviation principle; bifurcating autoregressive process; martingale; limit theorems; least squares estimation; binary tree structure; least-squares estimator; superexponential convergence},
language = {eng},
number = {3},
pages = {806-844},
publisher = {Gauthier-Villars},
title = {Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models},
url = {http://eudml.org/doc/271956},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Bitseki Penda, S. Valère
AU - Djellout, Hacène
TI - Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 3
SP - 806
EP - 844
AB - The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general $p$th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.
LA - eng
KW - deviation inequalities; moderate deviation principle; bifurcating autoregressive process; martingale; limit theorems; least squares estimation; binary tree structure; least-squares estimator; superexponential convergence
UR - http://eudml.org/doc/271956
ER -
References
top- [1] R. Adamczak and P. Milos. CLT for Ornstein–Uhlenbeck branching particle system. Preprint. Available at arXiv:1111.4559. Zbl1321.60035
- [2] I. V. Basawa and J. Zhou. Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab.41 (2004) 55–64. Zbl1049.62115MR2057565
- [3] B. Bercu, B. de Saporta and A. Gégout-Petit. Asymtotic analysis for bifurcating autoregressive processes via martingale approach. Electron. J. Probab.14 (2009) 2492–2526. Zbl1190.60019MR2563249
- [4] B. Bercu and A. Touati. Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab.18 (2008) 1848–1869. Zbl1152.60309MR2462551
- [5] V. Bitseki Penda, H. Djellout and A. Guillin. Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application. Ann. Appl. Probab.24 (2014) 235–291. Zbl1293.60036MR3161647
- [6] R. Cowan and R. G. Staudte. The bifurcating autoregressive model in cell lineage studies. Biometrics42 (1986) 769–783. Zbl0622.62105
- [7] V. H. de la Peña, T. L. Lai and Q.-M. Shao. Self-Normalized Processes. Limit Theory and Statistical Applications. Probability and Its Applications (New York). Springer-Verlag, Berlin, 2009. Zbl1165.62071MR2488094
- [8] B. de Saporta, A. Gégout-Petit and L. Marsalle. Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat.5 (2011) 1313–1353. Zbl1274.62192MR2842907
- [9] B. de Saporta, A. Gégout-Petit and L. Marsalle. Asymmetry tests for bifurcating auto-regressive processes with missing data. Statist. Probab. Lett.82 (2012) 1439–1444. Zbl1296.62161MR2929798
- [10] J. F. Delmas and L. Marsalle. Detection of cellular aging in a Galton–Watson process. Stochastic Process. Appl.120 (2010) 2495–2519. Zbl1206.60077MR2728175
- [11] A. Dembo. Moderate deviations for martingales with bounded jumps. Electron. Comm. Probab.1 (1996) 11–17. Zbl0854.60027MR1386290
- [12] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. Zbl1177.60035MR1619036
- [13] H. Djellout. Moderate deviations for martingale differences and applications to -mixing sequences. Stoch. Stoch. Rep.73 (2002) 37–63. Zbl1005.60044MR1914978
- [14] H. Djellout, A. Guillin and L. Wu. Moderate deviations of empirical periodogram and non-linear functionals of moving average processes. Ann. Inst. Henri Poincaré Probab. Stat.42 (2006) 393–416. Zbl1100.60010MR2242954
- [15] H. Djellout and A. Guillin. Large and moderate deviations for moving average processes. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001) 23–31. Zbl1002.60028MR1928987
- [16] N. Gozlan. Integral criteria for transportation-cost inequalities. Electron. Comm. Probab.11 (2006) 64–77. Zbl1112.60009MR2231734
- [17] N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields139 (2007) 235–283. Zbl1126.60022MR2322697
- [18] J. Guyon. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538–1569. Zbl1143.62049MR2358633
- [19] R. M. Huggins and I. V. Basawa. Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab.36 (1999) 1225–1233. Zbl0973.62100MR1746406
- [20] R. M. Huggins and I. V. Basawa. Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat.42 (2000) 423–432. Zbl1016.62098MR1802966
- [21] S. Y. Hwang, I. V. Basawa and I. K. Yeo. Local asymptotic normality for bifurcating autoregressive processes and related asymptotic inference. Stat. Methodol.6 (2009) 61–69. Zbl1220.62106MR2655539
- [22] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence, RI, 2001. Zbl0995.60002MR1849347
- [23] P. Massart. Concentration Inequalities and Model Selection. Lecture Notes in Mathematics 1896. Springer, Berlin, 2007. Zbl1170.60006MR2319879
- [24] A. Puhalskii. Large deviations of semimartingales: A maxingale problem approach. I. Limits as solutions to a maxingale problem. Stoch. Stoch. Rep. 61 (1997) 141–243. Zbl0890.60025MR1488137
- [25] J. Worms. Moderate deviations for stable Markov chains and regression models. Electron. J. Probab. 4 (1999) 28 pp. Zbl0980.62082MR1684149
- [26] J. Worms. Moderate deviations of some dependent variables. I. Martingales. Math. Methods Statist.10 (2001) 38–72. Zbl1007.60010MR1841808
- [27] J. Worms. Moderate deviations of some dependent variables. II. Some kernel estimators. Math. Methods Statist. 10 (2001) 161–193. Zbl1007.60011MR1851746
- [28] J. Zhou and I. V. Basawa. Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett.74 (2005) 77–88. Zbl1070.62075MR2189078
- [29] J. Zhou and I. V. Basawa. Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Series Anal.26 (2005) 825–842. Zbl1097.62091MR2203513
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.