Moderate deviations of empirical periodogram and non-linear functionals of moving average processes
H. Djellout; A. Guillin; L. Wu
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 4, page 393-416
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDjellout, H., Guillin, A., and Wu, L.. "Moderate deviations of empirical periodogram and non-linear functionals of moving average processes." Annales de l'I.H.P. Probabilités et statistiques 42.4 (2006): 393-416. <http://eudml.org/doc/77901>.
@article{Djellout2006,
author = {Djellout, H., Guillin, A., Wu, L.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {logarithmic Sobolev inequalities; Toeplitz matrices},
language = {eng},
number = {4},
pages = {393-416},
publisher = {Elsevier},
title = {Moderate deviations of empirical periodogram and non-linear functionals of moving average processes},
url = {http://eudml.org/doc/77901},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Djellout, H.
AU - Guillin, A.
AU - Wu, L.
TI - Moderate deviations of empirical periodogram and non-linear functionals of moving average processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 4
SP - 393
EP - 416
LA - eng
KW - logarithmic Sobolev inequalities; Toeplitz matrices
UR - http://eudml.org/doc/77901
ER -
References
top- [1] F. Avram, On bilinear forms in Gaussian random variables and Toeplitz matrices, Probab. Theory Related Fields79 (1988) 37-45. Zbl0648.60043MR952991
- [2] B. Bercu, F. Gamboa, A. Rouault, Large deviations for quadratic forms of Gaussian stationary processes, Stochastic Process. Appl.71 (1997) 75-90. Zbl0941.60050MR1480640
- [3] S. Bobkov, F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal.163 (1999) 1-28. Zbl0924.46027MR1682772
- [4] P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods, Springer-Verlag, New York, 1991. Zbl0604.62083MR1093459
- [5] W. Bryc, A. Dembo, On large deviations of empirical measures for stationary Gaussian processes, Stochastic Process. Appl.58 (1995) 23-34. Zbl0833.60027MR1341552
- [6] W. Bryc, A. Dembo, Large deviations for quadratic functionals of Gaussian functionals, J. Theoret. Probab.10 (1997) 307-332. Zbl0894.60026MR1455147
- [7] R.M. Burton, H. Dehling, Large deviations for some weakly dependent random processes, Statist. Probab. Lett.9 (1990) 397-401. Zbl0699.60016MR1060081
- [8] P.L. Butzer, R.J. Nessel, Fourier Analysis and Approximation, vol. I, Birkhäuser, 1971. Zbl0217.42603MR510857
- [9] X. Chen, Moderate deviations for m-dependent random variables with Banach space values, Statist. Probab. Lett.35 (1997) 123-134. Zbl0887.60010MR1483265
- [10] A. Dembo, O. Zeitouni, Large Deviations Techniques and their Applications, Jones and Bartlett, Boston, MA, 1993. Zbl0793.60030MR1202429
- [11] J.D. Deuschel, D.W. Stroock, Large Deviations, Academic Press, Boston, 1989. Zbl0705.60029MR997938
- [12] H. Djellout, A. Guillin, Large deviations and moderate deviations for moving average processes, Ann. Math. Fac. Toulouse10 (2001) 23-31. Zbl1002.60028MR1928987
- [13] H. Djellout, A. Guillin, L. Wu, Transportation cost-information inequalities for random dynamical systems and diffusions, Ann. Probab.32 (2004) 2702-2732. Zbl1061.60011MR2078555
- [14] M.D. Donsker, S.R.S. Varadhan, Large deviations for stationary Gaussian processes, Commun. Math. Phys.97 (1985) 187-210. Zbl0646.60030MR782966
- [15] R. Fox, M. Taqqu, Central limit theorems for quadratic forms in random variables having long-range dependence, Probab. Theory Related Fields74 (1987) 213-240. Zbl0586.60019MR871252
- [16] L. Giraitis, D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate, Probab. Theory Related Fields86 (1990) 87-104. Zbl0717.62015MR1061950
- [17] P. Hall, C.C. Heyde, Martingale Limit Theory and its Application, Academic Press, New York, 1980. Zbl0462.60045MR624435
- [18] T. Jiang, M.B. Rao, X. Wang, Moderate deviations for some weakly dependent random processes, Statist. Probab. Lett.15 (1992) 71-76. Zbl0761.60023MR1190249
- [19] T. Jiang, M.B. Rao, X. Wang, Large deviations for moving average processes, Stochastic Process. Appl.59 (1995) 309-320. Zbl0836.60025MR1357658
- [20] M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de probabilités XXXIII, Lecture Notes in Math., vol. 1709, Springer, 1999, pp. 120-216. Zbl0957.60016MR1767995
- [21] M. Rosenblatt, Gaussian and Non-Gaussian Linear Time Series and Random Fields, Springer-Verlag, New York, 2000. Zbl0933.62082MR1742357
- [22] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall, New York, 1994. Zbl0925.60027MR1280932
- [23] L. Wu, An introduction to large deviations, in: Yan J.A., Peng S., Fang S., Wu L. (Eds.), Several Topics in Stochastic Analysis, Academic Press of China, Beijing, 1997, pp. 225-336, (in Chinese).
- [24] L. Wu, On large deviations for moving average processes, in: Lai T.L., Yang H.L., Yung S.P. (Eds.), Probability, Finance and Insurance, Proceeding of a Workshop at the University of Hong-Kong, 15–17 July 2002, World Scientific, Singapore, 2004, pp. 15-49. MR2189197
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.