Zero bias transformation and asymptotic expansions

Ying Jiao

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 1, page 258-281
  • ISSN: 0246-0203

Abstract

top
Let Wbe a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic expansions for 𝔼 [ h ( W ) ] in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also discuss the estimates of remaining errors.

How to cite

top

Jiao, Ying. "Zero bias transformation and asymptotic expansions." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 258-281. <http://eudml.org/doc/271958>.

@article{Jiao2012,
abstract = {Let Wbe a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic expansions for $\mathbb \{E\}[h(W)]$ in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also discuss the estimates of remaining errors.},
author = {Jiao, Ying},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {normal and Poisson approximations; zero bias transformation; Stein’s method; reverse Taylor formula; concentration inequality; Stein's method},
language = {eng},
number = {1},
pages = {258-281},
publisher = {Gauthier-Villars},
title = {Zero bias transformation and asymptotic expansions},
url = {http://eudml.org/doc/271958},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Jiao, Ying
TI - Zero bias transformation and asymptotic expansions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 258
EP - 281
AB - Let Wbe a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic expansions for $\mathbb {E}[h(W)]$ in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also discuss the estimates of remaining errors.
LA - eng
KW - normal and Poisson approximations; zero bias transformation; Stein’s method; reverse Taylor formula; concentration inequality; Stein's method
UR - http://eudml.org/doc/271958
ER -

References

top
  1. [1] R. Arratia, L. Goldstein and L. Gordon. Two moments suffice for Poisson approximations: The Chen–Stein method. Ann. Probab.17 (1989) 9–25. Zbl0675.60017MR972770
  2. [2] A. D. Barbour. Asymptotic expansions based on smooth functions in the central limit theorem. Probab. Theory Related Fields72 (1986) 289–303. Zbl0572.60029MR836279
  3. [3] A. D. Barbour. Asymptotic expansions in the Poisson limit theorem. Ann. Probab.15 (1987) 748–766. Zbl0622.60049MR885141
  4. [4] A. D. Barbour and V. Čekanavičius. Total variation asymptotics for sums of independent integer random variables. Ann. Probab.30 (2002) 509–545. Zbl1018.60049MR1905850
  5. [5] A. D. Barbour, L. H. Y. Chen and K. P. Choi. Poisson approximation for unbounded functions. I. Independent summands. Statist. Sinica 5 (1995) 749–766. Zbl0826.60024MR1347617
  6. [6] A. D. Barbour, L. Holst and S. Janson. Poisson Approximation. Oxford Univ. Press, Oxford, 1992. Zbl0746.60002MR1163825
  7. [7] L. H. Y. Chen. Poisson approximation for dependent trials. Ann. Probab.3 (1975) 534–545. Zbl0335.60016MR428387
  8. [8] L. H. Y. Chen and Q.-M. Shao. A non-uniform Berry–Esseen bound via Stein’s method. Probab. Theory Related Fields120 (2001) 236–254. Zbl0996.60029MR1841329
  9. [9] L. H. Y. Chen and Q.-M. Shao. Stein’s method for normal approximation. In An Introduction to Stein’s Method 1–59. Lecture Notes Series, IMS, National University of Singapore 4. Singapore Univ. Press, Singapore, 2005. MR2235448
  10. [10] L. H. Y. Chen and Q.-M. Shao. Normal approximation for nonlinear statistics using a concentration inequality approach. Bernoulli13 (2007) 581–599. Zbl1146.62310MR2331265
  11. [11] N. El Karoui and Y. Jiao. Stein’s method and zero bias transformation for CDOs tranches pricing. Finance Stoch.13 (2009) 151–180. Zbl1199.91063MR2482050
  12. [12] T. Erhardsson. Stein’s method for Poisson and compound Poisson approximation. In An Introduction to Stein’s Method 61–113. Lecture Notes Series, IMS, National University of Singapore 4. Singapore Univ. Press, Singapore, 2005. MR2235449
  13. [13] L. Goldstein. L1 bounds in normal approximation. Ann. Probab.35 (2007) 1888–1930. Zbl1144.60018MR2349578
  14. [14] L. Goldstein. Bounds on the constant in the mean central limit theorem. Ann. Probab.38 (2010) 1672–1689. Zbl1195.60034MR2663641
  15. [15] L. Goldstein and G. Reinert. Stein’s method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab.7 (1997) 935–952. Zbl0903.60019MR1484792
  16. [16] L. Goldstein and G. Reinert. Distributional transformations, orthogonal polynomials, and stein characterizations. J. Theoret. Probab.18 (2005) 237–260. Zbl1072.62002MR2132278
  17. [17] F. Götze and C. Hipp. Asymptotic expansions in the central limit theorem under moment conditions. Z. Wahrsch. Verw. Gebiete42 (1978) 67–87. Zbl0369.60027MR467882
  18. [18] C. Hipp. Edgeworth expansions for integrals of smooth functions. Ann. Probab.5 (1977) 1004–1011. Zbl0375.60032MR455076
  19. [19] Y. Jiao. Risque de crédit: modélisation et simulation numérique. PhD thesis, Ecole Polytechnique, 2006. Available at http://www.imprimerie.polytechnique.fr/Theses/Files/Ying.pdf. Zbl1188.91008
  20. [20] A. Kolmogolov and S. Fomine. Éléments de la théorie des fonctions et de l’analyse fonctionnelle. Éditions Mir., Moscow, 1974. Zbl0299.46001MR367598
  21. [21] V. V. Petrov. Sums of Independent Random Variables. Springer, New York, 1975. Zbl0322.60042MR388499
  22. [22] V. Rotar. Stein’s method, Edgeworth’s expansions and a formula of Barbour. In Stein’s Method and Applications 59–84. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5. Singapore Univ. Press, Singapore, 2005. MR2201886
  23. [23] P. Smith. A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. Amer. Statist.49 (1995) 217–218. MR1347727
  24. [24] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Statist. Probab. 583–602. California Univ. Press, Berkeley, 1972. Zbl0278.60026MR402873
  25. [25] C. Stein. Approximate Computation of Expectations. IMS, Hayward, CA, 1986. Zbl0721.60016MR882007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.