Zero bias transformation and asymptotic expansions
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 1, page 258-281
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJiao, Ying. "Zero bias transformation and asymptotic expansions." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 258-281. <http://eudml.org/doc/271958>.
@article{Jiao2012,
abstract = {Let Wbe a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic expansions for $\mathbb \{E\}[h(W)]$ in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also discuss the estimates of remaining errors.},
author = {Jiao, Ying},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {normal and Poisson approximations; zero bias transformation; Stein’s method; reverse Taylor formula; concentration inequality; Stein's method},
language = {eng},
number = {1},
pages = {258-281},
publisher = {Gauthier-Villars},
title = {Zero bias transformation and asymptotic expansions},
url = {http://eudml.org/doc/271958},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Jiao, Ying
TI - Zero bias transformation and asymptotic expansions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 258
EP - 281
AB - Let Wbe a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic expansions for $\mathbb {E}[h(W)]$ in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also discuss the estimates of remaining errors.
LA - eng
KW - normal and Poisson approximations; zero bias transformation; Stein’s method; reverse Taylor formula; concentration inequality; Stein's method
UR - http://eudml.org/doc/271958
ER -
References
top- [1] R. Arratia, L. Goldstein and L. Gordon. Two moments suffice for Poisson approximations: The Chen–Stein method. Ann. Probab.17 (1989) 9–25. Zbl0675.60017MR972770
- [2] A. D. Barbour. Asymptotic expansions based on smooth functions in the central limit theorem. Probab. Theory Related Fields72 (1986) 289–303. Zbl0572.60029MR836279
- [3] A. D. Barbour. Asymptotic expansions in the Poisson limit theorem. Ann. Probab.15 (1987) 748–766. Zbl0622.60049MR885141
- [4] A. D. Barbour and V. Čekanavičius. Total variation asymptotics for sums of independent integer random variables. Ann. Probab.30 (2002) 509–545. Zbl1018.60049MR1905850
- [5] A. D. Barbour, L. H. Y. Chen and K. P. Choi. Poisson approximation for unbounded functions. I. Independent summands. Statist. Sinica 5 (1995) 749–766. Zbl0826.60024MR1347617
- [6] A. D. Barbour, L. Holst and S. Janson. Poisson Approximation. Oxford Univ. Press, Oxford, 1992. Zbl0746.60002MR1163825
- [7] L. H. Y. Chen. Poisson approximation for dependent trials. Ann. Probab.3 (1975) 534–545. Zbl0335.60016MR428387
- [8] L. H. Y. Chen and Q.-M. Shao. A non-uniform Berry–Esseen bound via Stein’s method. Probab. Theory Related Fields120 (2001) 236–254. Zbl0996.60029MR1841329
- [9] L. H. Y. Chen and Q.-M. Shao. Stein’s method for normal approximation. In An Introduction to Stein’s Method 1–59. Lecture Notes Series, IMS, National University of Singapore 4. Singapore Univ. Press, Singapore, 2005. MR2235448
- [10] L. H. Y. Chen and Q.-M. Shao. Normal approximation for nonlinear statistics using a concentration inequality approach. Bernoulli13 (2007) 581–599. Zbl1146.62310MR2331265
- [11] N. El Karoui and Y. Jiao. Stein’s method and zero bias transformation for CDOs tranches pricing. Finance Stoch.13 (2009) 151–180. Zbl1199.91063MR2482050
- [12] T. Erhardsson. Stein’s method for Poisson and compound Poisson approximation. In An Introduction to Stein’s Method 61–113. Lecture Notes Series, IMS, National University of Singapore 4. Singapore Univ. Press, Singapore, 2005. MR2235449
- [13] L. Goldstein. L1 bounds in normal approximation. Ann. Probab.35 (2007) 1888–1930. Zbl1144.60018MR2349578
- [14] L. Goldstein. Bounds on the constant in the mean central limit theorem. Ann. Probab.38 (2010) 1672–1689. Zbl1195.60034MR2663641
- [15] L. Goldstein and G. Reinert. Stein’s method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab.7 (1997) 935–952. Zbl0903.60019MR1484792
- [16] L. Goldstein and G. Reinert. Distributional transformations, orthogonal polynomials, and stein characterizations. J. Theoret. Probab.18 (2005) 237–260. Zbl1072.62002MR2132278
- [17] F. Götze and C. Hipp. Asymptotic expansions in the central limit theorem under moment conditions. Z. Wahrsch. Verw. Gebiete42 (1978) 67–87. Zbl0369.60027MR467882
- [18] C. Hipp. Edgeworth expansions for integrals of smooth functions. Ann. Probab.5 (1977) 1004–1011. Zbl0375.60032MR455076
- [19] Y. Jiao. Risque de crédit: modélisation et simulation numérique. PhD thesis, Ecole Polytechnique, 2006. Available at http://www.imprimerie.polytechnique.fr/Theses/Files/Ying.pdf. Zbl1188.91008
- [20] A. Kolmogolov and S. Fomine. Éléments de la théorie des fonctions et de l’analyse fonctionnelle. Éditions Mir., Moscow, 1974. Zbl0299.46001MR367598
- [21] V. V. Petrov. Sums of Independent Random Variables. Springer, New York, 1975. Zbl0322.60042MR388499
- [22] V. Rotar. Stein’s method, Edgeworth’s expansions and a formula of Barbour. In Stein’s Method and Applications 59–84. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5. Singapore Univ. Press, Singapore, 2005. MR2201886
- [23] P. Smith. A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. Amer. Statist.49 (1995) 217–218. MR1347727
- [24] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Statist. Probab. 583–602. California Univ. Press, Berkeley, 1972. Zbl0278.60026MR402873
- [25] C. Stein. Approximate Computation of Expectations. IMS, Hayward, CA, 1986. Zbl0721.60016MR882007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.